|
|
A187087
|
|
Positive squares in the order of their appearance in A048050.
|
|
2
|
|
|
9, 16, 49, 25, 16, 49, 64, 121, 36, 81, 64, 169, 36, 225, 100, 225, 64, 36, 441, 36, 169, 361, 225, 144, 441, 441, 144, 256, 400, 196, 64, 441, 144, 361, 64, 400, 441, 729, 961, 64, 196, 144, 729, 100, 841, 729, 400, 256, 1225, 100, 729, 1225, 961, 900, 841
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Corresponding values of n are in A187086. A048050 is Chowla's function: sum of divisors of n except 1 and n.
By the Goldbach conjecture, every even square appears; take two odd primes p and q such that p+q = k^2, then Chowla function of p*q is k^2. It appears that 17^2 is the first odd square not in A048050.
|
|
LINKS
|
|
|
MATHEMATICA
|
chowla[n_] := DivisorSigma[1, n] - n - 1; s = {}; Do[c = chowla[n]; If[c > 0 && IntegerQ@Sqrt[c], AppendTo[s, c]], {n, 1, 10^3}]; s (* Amiram Eldar, Aug 28 2019 *)
|
|
PROG
|
(PARI) {for(n=1, 2000, spf=sumdiv(n, x, x)-1-n; if(spf>0&&issquare(spf), print1(spf", ")))}
(Magma) A048050:=func< n | n eq 1 or IsPrime(n) select 0 else &+[ a: a in Divisors(n) | a ne 1 and a ne n ] >; [ a: n in [1..2500] | a gt 0 and IsSquare(a) where a is A048050(n) ]; // Klaus Brockhaus, Mar 04 2011
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|