Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jul 15 2019 17:36:20
%S 3,6,9,6,54,27,0,180,324,81,0,360,2160,1620,243,0,360,9720,17820,7290,
%T 729,0,0,30240,136080,119070,30618,2187,0,0,60480,771120,1360800,
%U 694008,122472,6561,0,0,60480,3265920,11838960,11022480,3674160,472392,19683
%N Bell polynomial B(n,k){3,6,6,0,...,0}
%C B(n,k){3*x^2,6*x,6,0,...,0)=n!/k!*x^(3*k-n)*sum(3^j*binomial(j,n-3*k+2*j)*binomial(k,j),j,0,n).
%C The Bell transform of the sequence "a(n) = 3,6,6,0,0,0, ..." without column 0. For the definition of the Bell transform see A264428. - _Peter Luschny_, Jan 29 2016
%H Vladimir Kruchinin, <a href="http://arxiv.org/abs/1104.5065">Derivation of Bell Polynomials of the Second Kind</a>, arXiv:1104.5065, 2011.
%H Jin Wang, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL22/Wang/wang53.html">Nonlinear Inverse Relations for Bell Polynomials via the Lagrange Inversion Formula</a>, J. Int. Seq., Vol. 22 (2019), Article 19.3.8.
%F B(n,k) = n!/k!*sum(j=0..n, 3^j*binomial(j,n-3*k+2*j)*binomial(k,j));
%e [3],
%e [6,9],
%e [6,54,27],
%e [0,180,324,81],
%e [0,360,2160,1620,243],
%e [0,360,9720,17820,7290,729],
%e [0,0,30240,136080,119070,30618,2187],
%e [0,0,60480,771120,1360800,694008,122472,6561],
%e [0,0,60480,3265920,11838960,11022480,3674160,472392,19683]
%p # The function BellMatrix is defined in A264428.
%p # Adds (1,0,0,0, ..) as column 0.
%p BellMatrix(n -> `if`(n<3,[3,6,6][n+1],0), 10); # _Peter Luschny_, Jan 29 2016
%t BellMatrix[f_, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
%t B = BellMatrix[Function[n, If[n < 3, {3, 6, 6}[[n + 1]], 0]], rows = 12];
%t Table[B[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* _Jean-François Alcover_, Jun 28 2018, after _Peter Luschny_ *)
%K nonn,tabl
%O 1,1
%A _Vladimir Kruchinin_, Mar 03 2011