Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Sep 08 2022 08:45:56
%S 3,1,4,1,5,9,9,0,0,9,4,5,1,7,6,4,7,3,8,1,2,5,3,9,7,1,5,5,2,4,1,2,8,4,
%T 9,5,7,3,3,4,2,4,5,5,1,0,4,0,7,8,2,7,0,7,2,1,9,7,5,5,5,2,0,8,6,7,7,1,
%U 1,7,2,8,5,5,0,1,3,3,2,0,9,8,7,8,2,2,1,2,6,1,1,8,6,2,2,7,3,2,7,0,8,4,5,2,2
%N Decimal expansion of (sqrt(2 + e^e)/e)^e.
%C (sqrt(2 + e^e)/e)^e is an approximation to Pi that's correct to five decimal digits.
%H Arkadiusz Wesolowski, <a href="/A187079/b187079.txt">Table of n, a(n) for n = 1..1000</a>
%H Carlos Rivera, <a href="http://www.primepuzzles.net/puzzles/puzz_050.htm">Puzzle 50</a>
%e (sqrt(2+e^e)/e)^e = 3.141599009451764738125397155...
%p evalf((sqrt(2+exp(1)^exp(1))/exp(1))^exp(1),120); # _Muniru A Asiru_, Sep 29 2018
%t RealDigits[N[(Sqrt[2 + E^E]/E)^E, 200]][[1]] (* _Arkadiusz Wesolowski_, Mar 08 2011 *)
%o (PARI) default(realprecision, 200); e=exp(1); x=(sqrt(2+e^e)/e)^e; for(n=1, 200, d=floor(x); x=(x-d)*10; print1(d, ", ")); \\ _Arkadiusz Wesolowski_, Mar 08 2011
%o (Magma) SetDefaultRealField(RealField(100)); (Sqrt(2+Exp(Exp(1)))/Exp(1))^Exp(1); // _G. C. Greubel_, Sep 29 2018
%Y Cf. A000796, A073227, A073226.
%K cons,easy,nonn
%O 1,1
%A _Arkadiusz Wesolowski_, Mar 08 2011