%I #6 Mar 31 2012 12:36:07
%S 1,4,0,9,12,0,16,56,24,0,25,152,296,24,0,36,320,1304,1344,0,0,49,580,
%T 3808,10440,5120,0,0,64,952,8832,43424,77384,15760,0,0,81,1456,17672,
%U 130592,473632,527528,36816,0,0,100,2112,31888,320880,1875432,4927216
%N T(n,k)=Number of n-turn queen's tours on a kXk board summed over all starting positions
%C Table starts
%C .1..4.....9.......16.......25.......36......49.......64......81...100..121.144
%C .0.12....56......152......320......580.....952.....1456....2112..2940.3960
%C .0.24...296.....1304.....3808.....8832...17672....31888...53312.84040
%C .0.24..1344....10440....43424...130592..320880...686384.1326848
%C .0..0..5120....77384...473632..1875432.5706000.14543984
%C .0..0.15760...527528..4927216.26115816
%C .0..0.36816..3280384.48781648
%C .0..0.57904.18430848
%C .0..0.45856
%C .0..0
%H R. H. Hardin, <a href="/A186965/b186965.txt">Table of n, a(n) for n = 1..71</a>
%e Some n=3 solutions for 3X3
%e ..0..3..1....0..1..0....3..0..0....2..1..0....0..0..0....0..0..0....1..0..0
%e ..0..0..2....0..2..0....2..0..0....0..0..0....1..2..0....0..1..3....2..3..0
%e ..0..0..0....0..3..0....1..0..0....3..0..0....0..0..3....0..2..0....0..0..0
%Y Row 2 is A035005
%K nonn,tabl
%O 1,2
%A _R. H. Hardin_ Mar 01 2011