login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

The smallest integer x > 0 such that the number of prime powers p^k (k>=1) in (x/2,x] equals n.
1

%I #21 Apr 08 2024 06:54:37

%S 2,3,5,9,13,25,29,31,43,49,71,73,81,103,109,113,127,131,139,157,173,

%T 181,191,193,199,239,241,269,271,283,289,293,313,349,353,361,373,379,

%U 409,419,421,433,439,443,463,499,509,523,571,577,599,601,607,613,619

%N The smallest integer x > 0 such that the number of prime powers p^k (k>=1) in (x/2,x] equals n.

%C An analog of Labos primes (A080359) on prime powers > 1 (A000961).

%H Peter J. C. Moses, <a href="/A186946/b186946.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) <= A186945(n).

%t a000961Q[n_]:=(Length[FactorInteger[n]]==1) && IntegerQ[n]; nn=99; t=Table[0,{nn+1}]; s=0; Do[If[a000961Q[k], s++]; If[a000961Q[k/2], s--]; If[s<=nn && t[[s+1]]==0, t[[s+1]]=k], {k, 2, Prime[3*nn]}]; Prepend[Rest[t],2] (* after T. D. Noe's code at A080359 *) (* _Peter J. C. Moses_, Sep 11 2013 *)

%Y Cf. A080459, A186945, A228520, A228592.

%K nonn

%O 1,1

%A _Vladimir Shevelev_, Aug 30 2013

%E More terms from _Peter J. C. Moses_, Aug 30 2013