login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186940
Diagonal sums of number triangle A114709.
2
1, 0, 3, 6, 31, 126, 589, 2772, 13485, 66780, 336207, 1714698, 8841627, 46015002, 241394073, 1275137448, 6776728825, 36208438488, 194388488155, 1048061471886, 5672504958327, 30808982057046, 167864115588325, 917271225518076, 5025659929354981
OFFSET
0,3
LINKS
FORMULA
G.f. (for offset 1): (1+3*x-2*x^2-sqrt(1-6*x+x^2))/(2*(3+x-3*x^2+x^3)).
Conjecture: 3*(n+1)*a(n) +(10-17*n)*a(n-1) -6*(n+1)*a(n-2) +10*(2*n-1)*a(n-3) +9*(1-n)*a(n-4) +(n-2)*a(n-5) =0. - R. J. Mathar, Nov 17 2011
a(n) ~ sqrt(3*sqrt(2)-4) * (3+2*sqrt(2))^(n+2) / (36 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Feb 01 2014
MATHEMATICA
Rest[CoefficientList[Series[(1+3*x-2*x^2-Sqrt[1-6*x+x^2])/(2*(3+x-3*x^2+x^3)), {x, 0, 20}], x]] (* Vaclav Kotesovec, Feb 01 2014 *)
CROSSREFS
Cf. A114709.
Hankel transform is A186941.
Sequence in context: A154135 A182274 A103091 * A376311 A101751 A374876
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Mar 01 2011
EXTENSIONS
More terms from Vincenzo Librandi, Feb 14 2014
STATUS
approved