login
Decimal expansion of the local minimum of the hyperfactorial function.
1

%I #12 Mar 07 2023 09:35:45

%S 5,3,7,6,8,5,5,8,1,2,6,1,0,8,2,6,3,3,2,1,3,3,2,9,7,9,2,2,0,3,0,0,2,4,

%T 5,6,0,7,8,9,4,2,4,5,6,1,1,2,5,4,3,9,8,7,3,7,1,1,1,7,8,5,2,7,3,4,9,8,

%U 8,6,0,6,8,5,7,9,9,2,9,0,2,3,6,6,4,3,0,9,0,3,0,3,8,4,4,3,7,9,8,9,8,5,0,9,1,0,4,0,0,7,3

%N Decimal expansion of the local minimum of the hyperfactorial function.

%D Mohammad K. Azarian, On the Hyperfactorial Function, Hypertriangular Function, and the Discriminants of Certain Polynomials, International Journal of Pure and Applied Mathematics, Vol. 36, No. 2, 2007, pp. 251-257. Mathematical Reviews, MR2312537. Zentralblatt MATH, Zbl 1133.11012.

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/Hyperfactorial.html">Hyperfactorial</a>.

%e =0.5376855812610826332133297922030024560789424561125439873711178527349886068...

%t FindRoot[ Hyperfactorial[x] == 0, {x, 1}, WorkingPrecision -> 111]; First@ RealDigits@ %[[-1, -1]]

%Y Cf. A186904.

%K cons,nonn

%O 0,1

%A _Robert G. Wilson v_, Feb 28 2011