login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Array read by antidiagonals: T(n,k) is the number of n-step king's tours on a k X k board summed over all starting positions.
8

%I #26 Nov 29 2024 17:33:25

%S 1,4,0,9,12,0,16,40,24,0,25,84,160,24,0,36,144,408,496,0,0,49,220,768,

%T 1764,1208,0,0,64,312,1240,3768,6712,2240,0,0,81,420,1824,6508,17280,

%U 22672,2984,0,0,100,544,2520,9984,32520,74072,68272,2384,0,0,121,684

%N Array read by antidiagonals: T(n,k) is the number of n-step king's tours on a k X k board summed over all starting positions.

%H R. H. Hardin, <a href="/A186861/b186861.txt">Table of n, a(n) for n = 1..145</a>

%F Empirical, for all rows: a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n > 3,3,3,5,6,7,8,9 respectively for row=1..8.

%e Table starts:

%e 1 4 9 16 25 36 49 64 81 100

%e 0 12 40 84 144 220 312 420 544 684

%e 0 24 160 408 768 1240 1824 2520 3328 4248

%e 0 24 496 1764 3768 6508 9984 14196 19144 24828

%e 0 0 1208 6712 17280 32520 52432 77016 106272 140200

%e 0 0 2240 22672 74072 156484 268048 408764 578632 777652

%e 0 0 2984 68272 296360 722384 1335984 2129440 3102752 4255920

%e 0 0 2384 183472 1110000 3193800 6481216 10899404 16418600 23038804

%e 0 0 784 436984 3908376 13530576 30543072 54738536 85743256

%e 0 0 0 905776 12956800 55056168 139775784

%e Some n=3 solutions for 3 X 3:

%e 3 2 0 0 0 0 0 3 0 0 0 0 0 0 0 0 0 1 0 1 0

%e 1 0 0 1 0 0 0 2 0 1 2 0 2 3 0 0 2 0 2 0 0

%e 0 0 0 2 3 0 0 0 1 3 0 0 0 1 0 0 0 3 0 3 0

%Y Rows are A000290, A033586(n-1), A186862, A186863, A186864, A186865, A186866, A186867, A366829.

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_, Feb 27 2011