%I #5 Mar 31 2012 12:36:06
%S 246,1910,1910,14825,29020,14825,115069,440505,440505,115069,893145,
%T 6687805,13066921,6687805,893145,6932452,101532811,387763760,
%U 387763760,101532811,6932452,53808589,1541462868,11506373601,22495797451
%N T(n,k)=Half the number of (n+2)X(k+2) binary arrays with each 3X3 subblock having a sum in 2..7
%C Table starts
%C .........246...........1910..............14825................115069
%C ........1910..........29020.............440505...............6687805
%C .......14825.........440505...........13066921.............387763760
%C ......115069........6687805..........387763760...........22495797451
%C ......893145......101532811........11506373601.........1304974153960
%C .....6932452.....1541462868.......341441530745........75702797880635
%C ....53808589....23402344941.....10131963654512......4391582264258067
%C ...417653681...355292192013....300656729278809....254759386224257430
%C ..3241761282..5394012633636...8921712703662435..14778806361675616311
%C .25162034228.81891392695720.264743644646633613.857331004466757829463
%H R. H. Hardin, <a href="/A186796/b186796.txt">Table of n, a(n) for n = 1..144</a>
%e Some solutions for 5X4 with a(1,1)=0
%e ..0..0..0..1....0..0..0..1....0..0..0..0....0..0..0..0....0..0..0..0
%e ..0..0..1..0....1..1..1..1....0..1..1..0....1..1..1..0....0..0..0..1
%e ..1..1..1..1....0..1..1..0....1..1..0..1....1..0..0..1....1..1..0..0
%e ..1..0..0..0....0..0..1..1....1..1..0..0....0..0..0..1....1..1..1..1
%e ..0..1..0..0....0..1..1..1....1..0..0..1....0..1..0..1....0..0..1..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_ Feb 26 2011