login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of the Integral of Dedekind Eta(x*I) from x = 0..infinity.
15

%I #53 Dec 30 2023 23:06:48

%S 3,6,2,7,5,9,8,7,2,8,4,6,8,4,3,5,7,0,1,1,8,8,1,5,6,5,1,5,2,8,4,3,1,1,

%T 4,6,4,5,6,8,1,3,2,4,9,6,1,8,5,4,8,1,1,5,1,1,3,9,7,6,9,8,7,0,7,7,6,2,

%U 4,6,3,6,2,2,5,2,7,0,7,7,6,7,3,6,8,2,4,9,9,7,6,4,2,4,1,2,0,3,3,7,7,1,2,4,4

%N Decimal expansion of the Integral of Dedekind Eta(x*I) from x = 0..infinity.

%C Reduction of the integral by _Robert Israel_, Jul 25 2012: (Start)

%C Use the definition of DedekindEta as a sum:

%C Eta(i*x) = Sum_{n=-oo..oo} (-1)^n*exp(-Pi*x*(6n-1)^2/12).

%C Now Integral_{x=0..oo} exp(-Pi*x*(6n-1)^2/12) dx = 12/(Pi*(6n-1)^2).

%C According to Maple, Sum_{n=-oo..oo} (-1)^n*12/(Pi*(6n-1)^2) is

%C 2*3^(1/2)*(dilog(1-(1/2)*i-(1/2)*3^(1/2)) - dilog(1-(1/2)*i+(1/2)*3^(1/2)) - dilog(1+(1/2)*i+(1/2)*3^(1/2)) + dilog(1+(1/2)*i-(1/2)*3^(1/2)))/Pi

%C (Jonquiere's inversion formula -- see http://en.wikipedia.org/wiki/Polylogarithm)

%C (but note that Maple's dilog(z) is L_2(1-z) in the notation there) gives

%C dilog(1-(1/2)*i-(1/2)*3^(1/2)) + dilog(1+(1/2)*i-(1/2)*3^(1/2)) = (13/72)*Pi^2

%C and

%C dilog(1-(1/2)*i+(1/2)*3^(1/2)) + dilog(1+(1/2)*i+(1/2)*3^(1/2)) = -11*Pi^2/72

%C which give the desired multiple of Pi. (End)

%C Ratio of surface area of a sphere to the regular octahedron whose edge equals the radius of the sphere. - _Omar E. Pol_, Dec 30 2023

%H D. H. Lehmer, <a href="http://www.jstor.org/stable/2322496">Interesting series involving the central binomial coefficient</a>, Am. Math. Monthly 92 (7) (1985) 449

%H Eric W. Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/DedekindEtaFunction.html">Dedekind Eta Function</a>.

%F Equals 2*Pi/sqrt(3), 2 times A093602, and in consequence equal to Sum_{m>=1} 3^m/(m*binomial(2m,m)) according to Lehmer. - _R. J. Mathar_, Jul 24 2012

%F Also equals Gamma(1/3)*Gamma(2/3) = A073005 * A073006. - _Jean-François Alcover_, Nov 24 2014

%F From _Amiram Eldar_, Aug 06 2020: (Start)

%F Equals Integral_{x=0..oo} log(1 + 1/x^3) dx.

%F Equals Integral_{x=-oo..oo} exp(x/3)/(exp(x) + 1) dx. (End)

%F Equals Integral_{x=0..2*Pi} 1/(2 + sin(x)) dx; since for a>1: Integral_{x=0..2*Pi} 1/(a + sin(x)) dx = 2*Pi/sqrt(a^2-1). - _Bernard Schott_, Feb 18 2023

%F Equals 4*A093766. - _Omar E. Pol_, Dec 30 2023

%e 3.627598728468435701188156515284311464568132496185481151139769870776...

%t RealDigits[2 Pi/Sqrt[3], 10, 111][[1]] (* _Robert G. Wilson v_, Nov 18 2012 *)

%o (PARI) intnum(x=1e-7,1e6,eta(x*I,1)) \\ _Charles R Greathouse IV_, Feb 26 2011

%Y Cf. A073005, A073006, A093602, A093766,

%K cons,nonn

%O 1,1

%A _Robert G. Wilson v_, Feb 25 2011