login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

sigma(n^2) modulo sigma(n).
0

%I #14 Mar 30 2012 17:26:37

%S 0,1,1,3,1,7,1,7,4,1,1,11,1,15,19,15,1,28,1,37,5,31,1,31,6,21,13,31,1,

%T 13,1,31,1,43,39,20,1,27,27,67,1,3,1,7,7,55,1,71,8,73,31,87,1,91,19,

%U 39,73,67,1,61,1,39,33,63,45,7,1,67,85,129,1,157,1,45,109,51,93,21,1,31,40,91,1,123,13,51,43,151,1,49,15,7,109,103,51,151,1,113,25,124,1,73,1,141,123,115,1,3,1,133,51,111,1,111,7,121,121

%N sigma(n^2) modulo sigma(n).

%C a(n)=1 iff n is prime. Apparently a(n)>2 for composite n's.

%F a(n) = A065764(n) mod A000203(n).

%t Table[Mod[DivisorSigma[1,n^2],DivisorSigma[1,n]],{n,200000}]

%Y Cf. A000203.

%K nonn,easy

%O 1,4

%A _Zak Seidov_, Mar 06 2011