login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Sum of all parts in the n-th region of the set of partitions of j, if 1<=n<=A000041(j).
32

%I #41 Jul 25 2020 12:15:55

%S 1,3,5,2,9,3,12,2,6,3,20,3,7,4,25,2,6,3,13,5,4,38,3,7,4,14,3,9,5,49,2,

%T 6,3,13,5,4,23,4,10,6,5,69,3,7,4,14,3,9,5,27,5,4,15,7,6,87,2,6,3,13,5,

%U 4,23,4,10,6,5,39,3,9,5,19,4,12,7,6,123

%N Sum of all parts in the n-th region of the set of partitions of j, if 1<=n<=A000041(j).

%C Also triangle read by rows: T(j,k) = sum of all parts in the k-th region of the last section of the set of partitions of j. See Example section. For more information see A135010. - Omar E. Pol, Nov 26 2011

%C For the definition of "region" see A206437. - _Omar E. Pol_, Aug 19 2013

%F a(A000041(n)) = A046746(n).

%e Contribution from Omar E. Pol, Nov 26 2011 (Start):

%e Written as a triangle:

%e 1;

%e 3;

%e 5;

%e 2,9;

%e 3,12;

%e 2,6,3,20;

%e 3,7,4,25;

%e 2,6,3,13,5,4,38;

%e 3,7,4,14,3,9,5,49;

%e 2,6,3,13,5,4,23,4,10,6,5,69;

%e 3,7,4,14,3,9,5,27,5,4,15,7,6,87;

%e 2,6,3,13,5,4,23,4,10,6,5,39,3,9,5,19,4,12,7,6,123;

%e (End)

%e From _Omar E. Pol_, Aug 18 2013: (Start)

%e Illustration of initial terms (first seven regions):

%e . _ _ _ _ _

%e . _ _ _ |_ _ _ _ _|

%e . _ _ _ _ |_ _ _| |_ _|

%e . _ _ |_ _ _ _| |_|

%e . _ _ _ |_ _| |_ _| |_|

%e . _ _ |_ _ _| |_| |_|

%e . _ |_ _| |_| |_| |_|

%e . |_| |_| |_| |_| |_|

%e .

%e . 1 3 5 2 9 3 12

%e .

%e (End)

%t lex[n_]:=DeleteCases[Sort@PadRight[Reverse /@ IntegerPartitions@n], x_ /; x==0,2];

%t A186412 = {}; l = {};

%t For[j = 1, j <= 50, j++,

%t mx = Max@lex[j][[j]]; AppendTo[l, mx];

%t For[i = j, i > 0, i--, If[l[[i]] > mx, Break[]]];

%t AppendTo[A186412, Total@Take[Reverse[First /@ lex[mx]], j - i]];

%t ];

%t A186412 (* _Robert Price_, Jul 25 2020 *)

%Y Row sums of triangle A186114 and of triangle A193870.

%Y Row j has length A187219(j).

%Y Row sums give A138879.

%Y Right border gives A046746, j >= 1.

%Y Records give A046746, j >= 1.

%Y Partial sums give A182244.

%Y Cf. A000041, A002865, A066186, A135010, A138121, A138879, A194436, A194437, A194438, A194439, A194446, A194447.

%K nonn,tabf

%O 1,2

%A _Omar E. Pol_, Aug 12 2011