login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

a(n) = 2^A001840(n).
0

%I #8 Apr 18 2019 19:50:57

%S 1,2,4,8,32,128,512,4096,32768,262144,4194304,67108864,1073741824,

%T 34359738368,1099511627776,35184372088832,2251799813685248,

%U 144115188075855872,9223372036854775808,1180591620717411303424,151115727451828646838272

%N a(n) = 2^A001840(n).

%C A factor in the Hankel transform A186339 of A186338.

%C a(n)*a(n-4) = 2*a(n-1)*a(n-3) = a(n-1)*a(n-3) + c(n)*a(n-2)^2, where c(3*n+2) = 2, c(3*n) = c(3*n+1) = 1 for all n in Z. - _Michael Somos_, Oct 19 2018

%F a(n)=2^floor((n+1)(n+2)/6).

%e G.f. = 1 + 2*x + 4*x^2 + 8*x^3 + 32*x^4 + 128*x^5 + 512*x^6 + ... - _Michael Somos_, Oct 19 2018

%t a[ n_] := 2^Quotient[ Binomial[n + 2, 2], 3]; (* _Michael Somos_, Oct 19 2018 *)

%o (PARI) {a(n) = 2^(binomial(n+2, 2)\3)}; /* _Michael Somos_, Oct 19 2018 */

%Y Cf. A058937.

%K nonn,easy

%O 0,2

%A _Paul Barry_, Feb 18 2011