login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle T(n,k), the coefficient of x^n in x^k*(1+x+x^2+2*x^3)^k, 1<=k<=n.
0

%I #15 Feb 13 2023 07:57:40

%S 1,1,1,1,2,1,2,3,3,1,0,6,6,4,1,0,5,13,10,5,1,0,4,18,24,15,6,1,0,4,21,

%T 43,40,21,7,1,0,0,25,64,85,62,28,8,1,0,0,18,90,151,150,91,36,9,1,0,0,

%U 12,100,245,306,245,128,45,10,1,0,0,8,97,340,561,560,378,174,55,11,1

%N Triangle T(n,k), the coefficient of x^n in x^k*(1+x+x^2+2*x^3)^k, 1<=k<=n.

%C The Riordan array (1,x+x^2+x^3+2*x^4) without the column k=0.

%H Vladimir Kruchinin, <a href="http://arxiv.org/abs/1009.2565">Composition of ordinary generating functions</a>, arXiv:1009.2565 [math.CO], 2010.

%F T(n,k) = sum_{j=0..k} binomial(k,j) *sum_{i=0..n-k} binomial(j,i) *binomial(k-j,n-3*k+2*j-i) *2^(n-3*k+2*j-i), n>0, n>=k.

%e 1,

%e 1,1,

%e 1,2,1,

%e 2,3,3,1,

%e 0,6,6,4,1,

%e 0,5,13,10,5,1,

%e 0,4,18,24,15,6,1,

%e 0,4,21,43,40,21,7,1,

%e 0,0,25,64,85,62,28,8,1,

%e 0,0,18,90,151,150,91,36,9,1,

%e 0,0,12,100,245,306,245,128,45,10,1,

%e 0,0,8,97,340,561,560,378,174,55,11,1

%K nonn,tabl,easy

%O 1,5

%A _Vladimir Kruchinin_, Feb 17 2011