login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A186158
Array associated with "the Mysterious B Sequence", by antidiagonals.
1
18, 5, 165, 3, 18, 1333, 2, 8, 56, 10353, 2, 5, 18, 165, 78958, 1, 3, 9, 38, 472, 596438, 1, 3, 6, 18, 80, 1333, 4479398, 1, 2, 5, 11, 32, 165, 3727, 33514643, 1, 2, 4, 8, 18, 56, 333, 10353, 250104748, 1, 2, 3, 6, 12, 28, 96, 668, 28635, 1862945616, 1, 2, 3, 5, 9, 18, 45, 165, 1333, 78958
OFFSET
1,1
COMMENTS
This array represents the solution of Problem 7 in "Unsolved Problems and Rewards" in Links (below). Problem 7 is restated here:
For any sequence A=(a(0),a(1),...) of positive real numbers, create a sequence B as follows: let b(0)=a(0) and for k>0, let U=[a(2k-1)]^2, V=a(2k), W=4b(k-1), b(k)=V-U/W, and assume for each k that W is not zero. Determine conditions on c and d for which the arithmetic sequence A=(c,c+d,c+2d,...) yields b(k)>0 for every k.
Peter Kosinar found a necessary and sufficient condition to be 0<d<=c. He also proved that if d>c, then the sequence B contains one and only one negative number. The number in row i, column j, is the unique k for which b(k)<0 when c=i and d=i+j.
LINKS
C. Kimberling, Partial sums of generating functions as polynomial sequences, The Fibonacci Quarterly 48 (2010) 327-334. (See Theorem 1.)
FORMULA
Starting with A=(c,c+d,c+2d,...), put b(0)=a(0) and for k>0, put U=[a(2k-1]^2, V=a(2k), W=4b(k-1), b(k)=V-U/W.
For i>=1 and j>=1, put f(i,i+j)=(the index k for which b(k)<0). Then the array, T, is given by T(i,j)=f(i,i+j).
EXAMPLE
Northwest corner:
18.......5.....3....2...2...1...1...1...1
165......18....9....6...5...4...3...3...2
1333.....56....18...9...6...5...4...3...3
10353....165...38...18..11..8...6...5...4
78958....472...80...32..18..12..9...7...6
596438...1333..165..56..28..18..12..9...8
4479388..3727..333..96..45..26..18..13..10
Column 1 continues with 33514643,250104748,1862945616.
T(1,1)=18 because when (c,d)=(1,2), the only negative number in the sequence B is b(18).
MATHEMATICA
B[0, c_, d_]:=c;
B[k_, c_, d_]:=B[Mod[k, 2], c, d]=c+2d*k-((c+d(-1+2k))^2)/(4B[Mod[k-1, 2], c, d]);
Table[Table[NestWhile[#1+1&, 1, B[#1, c, d]>0&], {d, c+1, c+10}], {c, 1, 5}]//TableForm
(* Peter J. C. Moses, Feb 08 2011 *)
CROSSREFS
Sequence in context: A214893 A065909 A352223 * A331932 A038642 A040311
KEYWORD
nonn,tabl,changed
AUTHOR
Clark Kimberling, Feb 15 2011
STATUS
approved