login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of (n+2)X9 0..4 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order
1

%I #5 Mar 31 2012 12:36:04

%S 15084070635,983600385660,35285910378578,878623899164100,

%T 16772871828446212,259853049462211773,3389319838308873682,

%U 38178484248123485705,378421518105145967388,3348715684902249747787

%N Number of (n+2)X9 0..4 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order

%C Column 7 of A186096

%H R. H. Hardin, <a href="/A186094/b186094.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = (4295593/62612641379088316917275180413600636755116463884280445009920000000000000)*n^58

%F + (66194495959/835554903920937194723637752415980911180347293904018352373760000000000000)*n^57

%F + (1145943910171/25653001436169124399409930995227484115186101128632142397440000000000000)*n^56

%F + (192317448525879899/11719756941838408547044708474676784885766450201337941626716160000000000000)*n^55

%F + (3138710955623871959/710288299505358093760285362101623326410087890990178280407040000000000000)*n^54

%F + (220289987610944654833/236762766501786031253428454033874442136695963663392760135680000000000000)*n^53

%F + (514677202579209674891/3226327006837755142866425474256150679011580217635331112960000000000000)*n^52

%F + (1743862761415964445013/76145829706835130120099202626674884906741840800833863680000000000000)*n^51

%F + (60808411502362672186573/21640521845172060047972829904512908467152467789302726656000000000000)*n^50

%F + (47210152529198562800189281/157666659157682151778087760732879761689253693893491294208000000000000)*n^49

%F + (290012911729147013895611197/10323412206752998033089079571795698682034468052550025216000000000000)*n^48

%F + (7465433073390880474749854171/3176434525154768625565870637475599594472144016169238528000000000000)*n^47

%F + (14860967481446419794681613051/83675073610966549407003684472508196004332061216210944000000000000)*n^46

%F + (2816423067910246120279108772711/229196940760473591853966613989913754272735645940056064000000000000)*n^45

%F + (834173680834968814750558037719/1056902888882289290499187284538469222601547774427136000000000000)*n^44

%F + (14598896410537692617841015034387/306413022407050256489260179130900741006331077459968000000000000)*n^43

%F + (7484858606858345341455245281278469/2745840727926744934120812147870707415529602523594752000000000000)*n^42

%F + (36988534640833598944606124954095559/249621884356976812192801104351882492320872956690432000000000000)*n^41

%F + (31542958383272851876417403034061522747/4135504023157963406877076832463809339242755020292096000000000000)*n^40

%F + (2113652669596713357685177173164195044657/5726082493603333947983644844949889854336122335789056000000000000)*n^39

%F + (1288601727227541332528384158042211269649657/77352342457448546314866781238796757681382705237852160000000000000)*n^38

%F + (3296518418656618211583891065686293157972759/4735857701476441611114292728905923939676492157419520000000000000)*n^37

%F + (91990588949424164741570349001721207682521167/3434563468187869817069374456548890785080699267317760000000000000)*n^36

%F + (20820379378011851593436201730116525965600447/22016432488383780878649836259928787083850636328960000000000000)*n^35

%F + (41595664818455012677960859196874158865885339/1360492560185331676399039198474506153725767188480000000000000)*n^34

%F + (677797171678434564797144670827500373303343017/749659165816407250260695068547176860216239063040000000000000)*n^33

%F + (130958433926737355989394761558844925597132020177/5356939455729743475821216843993367980295208304640000000000000)*n^32

%F + (8339550097514236500738952399598557313667795799/13799135659280223614866287888359003061831598080000000000000)*n^31

%F + (31300691219026863072884356304153399742797940627331/2290893923924977855097736972915136168531775717376000000000000)*n^30

%F + (22322064581478575478116423956895624203780846191427/78996342204309581210266792169487454087302610944000000000000)*n^29

%F + (312126670616111026689872450790583142705321908332740141/58365130831950728917518781614556313994835412385792000000000000)*n^28

%F + (110109070257341853034342271869950613361479471943886497/1188430265808951493795631299843906846048684867584000000000000)*n^27

%F + (588982154586756832995455157611802736838919944035534348687/400699071288584811991427019930703924926081581187072000000000000)*n^26

%F + (1834075567472585335940767914313519292545590347259971025019/85864086704696745426734361413722269627017481682944000000000000)*n^25

%F + (369986261121960491553342745539878332282611657832884921889/1300971010677223415556581233541246509500264873984000000000000)*n^24

%F + (7548429684110045868674472325861440821988597115518782203/2175536807152547517653145875487034296823185408000000000000)*n^23

%F + (16766616320983339827122932843727850325179264674145916023361/432222410447111560083306525132087096492762857472000000000000)*n^22

%F + (1616022891016866198128408217152741769760085977049194267513711/4066819952843276951692929577379183135181905068032000000000000)*n^21

%F + (538941687040117622972166046619791637667830108777090537713087/144573008480578174182989647949306141001388130304000000000000)*n^20

%F + (18835378557473229790760498161165770967901755244896717424344801/588618677385211137745029280936460716934223101952000000000000)*n^19

%F + (79655666522137150510010771949306647161958717431074167698461367/317392424080260907607613827955934700307669319680000000000000)*n^18

%F + (31643516475449024097301144430251200110346053201943021255888599/17632912448903383755978545997551927794870517760000000000000)*n^17

%F + (3119570890381935887850913853900694178371938218412820941465156989/267432505475034653632341280962870904888869519360000000000000)*n^16

%F + (31926787149992570765983463044091998590476079035210759574789538373/464973872931445852419938538794419531872856965120000000000000)*n^15

%F + (5371857688180123572096486114467580410505611740588825123479163191961/14745307818871457107801990328738183033483176181760000000000000)*n^14

%F + (912465001657494058002176499969450715485945194511984274694674676357/526618136388266325278642511740649394052970577920000000000000)*n^13

%F + (3785103088177584411713962690861605944598506172984669464775376686043/515646925213510776835337459412719198343533690880000000000000)*n^12

%F + (648151290471264111381181029845577576713746235517141729873435557/23568121267585848385910574496673485915422720000000000000)*n^11

%F + (733451702552394113822754539791468984917343051116033596222178465337/8116664563546002968704385935200209603555622912000000000000)*n^10

%F + (2790650472605741319627593276416691680547925513730347107424695741/10822219418061337291605847913600279471407497216000000000)*n^9

%F + (2192221109371904639740968300097929735334469901404538545293380593/3472128729961345714390209538946756330409905356800000000)*n^8

%F + (3239102391827737893939930523551504376388293849957909345934058571/2480091949972389795993006813533397378864218112000000000)*n^7

%F + (7689651450716683695466041921325990393858780501402849365584689/3439164661133873866761626402858975957085388800000000)*n^6

%F + (3643399079725443015241877949608322329848011782980652631233/1182781497215353446240770985110229826510848000000)*n^5

%F + (103779403372006934978634260425190697485139195533132473471/31617643919068430868124505770803762678374400000)*n^4

%F + (372094690605307227479798126516546137529923545527399/146231749357440850205926045116012518400000)*n^3

%F + (245847598828937657355463658884973322326068973/191275733551539357132824522990880000)*n^2

%F + (54130348505995807424969189156633/164249358725037825439200)*n

%F + 3385762

%e Some solutions for 4X9

%e ..0..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..1..1

%e ..0..0..0..0..0..0..0..1..2....0..0..0..0..0..0..0..1..2

%e ..0..0..0..0..0..0..0..3..4....0..0..0..0..0..0..0..3..3

%e ..0..0..0..0..0..0..1..4..4....0..0..0..0..0..0..0..3..3

%K nonn

%O 1,1

%A _R. H. Hardin_ Feb 12 2011