login
Triangle T(n,k) read by rows: number of 1-dimensional sandpiles (see A186085) with n grains and base length k.
6

%I #46 Mar 11 2022 07:45:09

%S 1,0,1,0,0,1,0,0,1,1,0,0,0,2,1,0,0,0,1,3,1,0,0,0,0,3,4,1,0,0,0,0,1,6,

%T 5,1,0,0,0,0,1,4,10,6,1,0,0,0,0,0,3,10,15,7,1,0,0,0,0,0,2,8,20,21,8,1,

%U 0,0,0,0,0,1,7,19,35,28,9,1,0,0,0,0,0,0,5,18,40,56,36,10,1,0,0,0,0,0,0,3,16,41,76,84,45,11,1,0,0,0,0,0,0,1,12,41,86,133,120,55,12,1

%N Triangle T(n,k) read by rows: number of 1-dimensional sandpiles (see A186085) with n grains and base length k.

%C Compositions of n into k nonzero parts such that the first and last parts are 1 and the absolute difference between consecutive parts is <=1.

%C Row sums are A186085.

%C Column sums are the Motzkin numbers (A001006).

%C First nonzero entry in row n appears in column A055086(n).

%C From _Joerg Arndt_, Nov 06 2012: (Start)

%C The transposed triangle (with zeros omitted) is A129181.

%C For large k, the columns end in reverse([1, 1, 3, 5, 9, 14, 24, 35, ...]) for k even (cf. A053993) and reverse([1, 2, 3, 6, 10, 16, 26, 40, 60, 90, ...]) for k odd (cf. A201077).

%C The diagonals below the main diagonal are (apart from leading zeros), n, n*(n+1)/2, n*(n+1)*(n+2)/6, and the e-th diagonal appears to have a g.f. of the form f(x)/(1-x)^e.

%C (End)

%H Alois P. Heinz, <a href="/A186084/b186084.txt">Rows n = 0..140, flattened</a>

%H Joerg Arndt, <a href="/A186084/a186084.gp.txt">the first 36 rows</a> as Pari script.

%F G.f. A(x,y) satisfies: A(x,y) = 1/(1 - x*y - x^3*y^2*A(x, x*y) ). [_Paul D. Hanna_, Feb 22 2011]

%F G.f.: (formatting to make the structure apparent)

%F A(x,y) = 1 /

%F (1 - x^1*y / (1 - x^2*y / (1 - x^5*y^2 /

%F (1 - x^3*y / (1 - x^4*y / (1 - x^9*y^2 /

%F (1 - x^5*y / (1 - x^6*y / (1 - x^13*y^2 /

%F (1 - x^7*y / (1 - x^8*y / (1 - x^17*y^2 / (1 -...)))))))))))))

%F (continued fraction). [_Paul D. Hanna_]

%F G.f.: A(x,y) = 1/(1-x*y - x^3*y^2/(1-x^2*y - x^5*y^2/(1-x^3*y - x^7*y^2/(1 -...)))) (continued fraction). [_Paul D. Hanna_]

%e Triangle begins:

%e 1;

%e 0,1;

%e 0,0,1;

%e 0,0,1,1;

%e 0,0,0,2,1;

%e 0,0,0,1,3,1;

%e 0,0,0,0,3,4,1;

%e 0,0,0,0,1,6,5,1;

%e 0,0,0,0,1,4,10,6,1;

%e 0,0,0,0,0,3,10,15,7,1;

%e 0,0,0,0,0,2,8,20,21,8,1;

%e 0,0,0,0,0,1,7,19,35,28,9,1;

%p b:= proc(n, i) option remember; `if`(n=0, `if`(i=1, 1, 0),

%p `if`(n<0 or i<1, 0, expand(x*add(b(n-i, i+j), j=-1..1)) ))

%p end:

%p T:= n-> (p-> seq(coeff(p, x, i), i=0..degree(p)))(b(n, 1)):

%p seq(T(n), n=0..20); # _Alois P. Heinz_, Jul 24 2013

%t b[n_, i_] := b[n, i] = If[n == 0, If[i == 1, 1, 0], If[n<0 || i<1, 0, Expand[ x*Sum[b[n-i, i+j], {j, -1, 1}]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, i], {i, 0, Exponent[p, x]}]][b[n, 1]]; Table[T[n], {n, 0, 20}] // Flatten (* _Jean-François Alcover_, Feb 18 2015, after _Alois P. Heinz_ *)

%o (PARI) {T(n,k)=local(A=1+x*y);for(i=1,n,A=1/(1-x*y-x^3*y^2*subst(A,y,x*y+x*O(x^n))));polcoeff(polcoeff(A,n,x),k,y)}

%o /* _Paul D. Hanna_ */

%Y Cf. A186085 (sandpiles with n grains, row sums), A001006 (Motzkin numbers, column sums), A055086.

%Y Cf. A186505 (antidiagonal sums).

%K nonn,tabl

%O 0,14

%A _Joerg Arndt_, Feb 13 2011