login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form 2*k + 1, 3*k + 2, or 5*k + 3.
2

%I #28 Sep 08 2022 08:45:55

%S 1,2,3,5,7,8,9,11,13,14,15,17,18,19,20,21,23,25,26,27,28,29,31,32,33,

%T 35,37,38,39,41,43,44,45,47,48,49,50,51,53,55,56,57,58,59,61,62,63,65,

%U 67,68,69,71,73,74,75,77,78,79,80,81,83,85,86,87,88,89,91,92,93,95,97

%N Numbers of the form 2*k + 1, 3*k + 2, or 5*k + 3.

%C n is in the sequence iff n is in A005408 or in A016789 or in A016885.

%C First differences are periodic with period length 22. Least common multiple of 2, 3, 5 is 30; number of terms <= 30 is 22.

%H G. C. Greubel, <a href="/A186042/b186042.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_22">Index entries for linear recurrences with constant coefficients</a>, signature (2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-1).

%F a(n) = a(n-22) + 30.

%F a(n) = a(n-1) + a(n-22) - a(n-23).

%F G.f.: x*(x^21 + x^19 + x^17 + x^16 + x^15 + x^13 + x^11 + x^10 + x^8 + x^7 + x^6 + x^4 + x^3 + x^2 + 1) / ((x - 1)^2*(x^10 - x^9 + x^8 - x^7 + x^6 - x^5 + x^4 - x^3 + x^2 - x + 1)*(x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)).

%t LinearRecurrence[{2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-2,2,-1},{1,2,3,5,7,8,9,11,13,14,15,17,18,19,20,21,23,25,26,27,28,29},71] (* _Ray Chandler_, Jul 12 2015 *)

%o (Magma) IsA186042:=func< n | exists{ k: k in [0..n div 2] | n in [2*k+1, 3*k+2, 5*k+3] } >; [ n: n in [1..100] | IsA186042(n) ];

%o (PARI) isok(n) = (n % 2) || ((n % 3)==2) || ((n % 5)==3); \\ _Michel Marcus_, Jul 26 2017

%Y Cf. A005408, A016789, A016885.

%K nonn,easy

%O 1,2

%A _Klaus Brockhaus_, Feb 11 2011, Mar 09 2011