login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers of the form 3*k + 2, 5*k + 3, or 7*k + 4.
2

%I #31 Sep 08 2022 08:45:55

%S 2,3,4,5,8,11,13,14,17,18,20,23,25,26,28,29,32,33,35,38,39,41,43,44,

%T 46,47,48,50,53,56,58,59,60,62,63,65,67,68,71,73,74,77,78,80,81,83,86,

%U 88,89,92,93,95,98,101,102,103,104,107,108,109,110,113,116,118,119,122

%N Numbers of the form 3*k + 2, 5*k + 3, or 7*k + 4.

%C n is in the sequence iff n is in A016789 or in A016885 or in A017029.

%C First differences are periodic with period length 57. Least common multiple of 3, 5, 7 is 105; number of terms <= 105 is 57.

%C Sequence is not essentially the same as A053726: a(n) = A053726(n-3) for 3 < n < 33, a(34)=62, A053726(34-3)=61.

%C Sequence is not essentially the same as A104275: a(n) = A104275(n-2) for 3 < n < 33, a(34)=62, A104275(34-3)=61.

%H G. C. Greubel, <a href="/A186041/b186041.txt">Table of n, a(n) for n = 1..1000</a>

%H <a href="/index/Rec#order_58">Index entries for linear recurrences with constant coefficients</a>, signature (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1).

%F a(n) = a(n-57) + 105.

%F a(n) = a(n-1) + a(n-57) - a(n-58).

%F G.f.: x*(x^57 + x^56 + x^55 + x^54 + 3*x^53 + 3*x^52 + 2*x^51 + x^50 + 3*x^49 + x^48 + 2*x^47 + 3*x^46 + 2*x^45 + x^44 + 2*x^43 + x^42 + 3*x^41 + x^40 + 2*x^39 + 3*x^38 + x^37 + 2*x^36 + 2*x^35 + x^34 + 2*x^33 + x^32 + x^31 + 2*x^30 + 3*x^29 + 3*x^28 + 2*x^27 + x^26 + x^25 + 2*x^24 + x^23 + 2*x^22 + 2*x^21 + x^20 + 3*x^19 + 2*x^18 + x^17 + 3*x^16 + x^15 + 2*x^14 + x^13 + 2*x^12 + 3*x^11 + 2*x^10 + x^9 + 3*x^8 + x^7 + 2*x^6 + 3*x^5 + 3*x^4 + x^3 + x^2 + x + 2) / ((x - 1)^2*(x^2 + x + 1)*(x^18 + x^17 + x^16 + x^15 + x^14 + x^13 + x^12 + x^11 + x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)*(x^36 - x^35 + x^33 - x^32 + x^30 - x^29 + x^27 - x^26 + x^24 - x^23 + x^21 - x^20 + x^18 - x^16 + x^15 - x^13 + x^12 - x^10 + x^9 - x^7 + x^6 - x^4 + x^3 - x + 1)).

%t Take[With[{no=50},Union[Join[3Range[0,no]+2,5Range[0,no]+3,7Range[0,no]+4]]],70] (* _Harvey P. Dale_, Feb 16 2011 *)

%o (Magma) IsA186041:=func< n | exists{ k: k in [0..n div 3] | n in [3*k+2, 5*k+3, 7*k+4] } >; [ n: n in [1..200] | IsA186041(n) ];

%Y Cf. A016789, A016885, A017029, A053726, A104275.

%K nonn,easy

%O 1,1

%A _Klaus Brockhaus_, Feb 11 2011, Mar 09 2011