login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (-1)^A186038(n).
3

%I #9 Mar 07 2017 00:13:58

%S 1,1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,1,1,1,-1,-1,1,-1,-1,1,1,1,-1,1,

%T 1,-1,1,1,-1,-1,-1,-1,1,1,-1,1,1,-1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,1,-1,

%U -1,1,-1,-1,1,1,1,1,-1,-1,1,-1,-1,1,-1,-1

%N a(n) = (-1)^A186038(n).

%C Hankel transform is A186040.

%H G. C. Greubel, <a href="/A186039/b186039.txt">Table of n, a(n) for n = 0..1000</a>

%F a(n) = (-1)^log_3(A002426(n)/numerator(A002426(n)/3^n)).

%t Join[{1}, Table[(-1)^(Log[3, GegenbauerC[n, -n, -1/2]/ (Numerator[ GegenbauerC[n, -n, -1/2]/3^n])]), {n,1,50}]] (* _G. C. Greubel_, Mar 06 2017 *)

%Y Cf. A002426, A186038, A186040.

%K sign,easy

%O 0

%A _Paul Barry_, Feb 11 2011