%I #16 May 16 2020 14:27:40
%S 1,1,-2,4,8,-16,-32,-64,128,-256,-1536,-3072,2048,4096,8192,-16384,
%T 32768,-65536,-393216,-2359296,14155776,28311552,-94371840,62914560,
%U 8388608,16777216,-570425344,-1140850688,-134217728,268435456,-8053063680,16106127360,2147483648,-4294967296,111669149696,670014898176,927712935936,5566277615616
%N Hankel transform of Thue-Morse related sequence A106400.
%H J.-P. Allouche, J. Peyrière, Z.-X. Wen and Z.-Y. Wen, <a href="https://doi.org/10.5802/aif.1609">Hankel determinants of the Thue-Morse sequence</a>, Ann. Inst. Fourier, Grenoble, 48 (1998), pp. 1-27.
%H Yann Bugeaud and Guo-Niu Han, <a href="https://doi.org/10.37236/3831">A combinatorial proof of the non-vanishing of Hankel determinants of the Thue-Morse sequence</a>, Electronic Journal of Combinatorics 21(3) (2014), #P3.26.
%H Guo-Niu Han, <a href="https://doi.org/10.1016/j.jnt.2014.07.022">Hankel determinant calculus for the Thue-Morse and related sequences</a>, Journal of Number Theory, Volume 147, February 2015, Pages 374-395.
%H Guo-Niu Han and Wen Wu, <a href="https://hal.archives-ouvertes.fr/hal-01278054">Evaluations of the Hankel determinants of a Thue-Morse-like sequence</a>, International Journal of Number Theory, World Scientific Publishing, 2015, 11 (6), 10.1142/S1793042115500815, hal-01278054.
%F a(n) = Product{k=0..n} (A186027(k)/A186028(k))^(n-k).
%o (PARI) a(n) = matdet(matrix(n, n, i, j, (-1)^hammingweight(i+j-2))); \\ _Michel Marcus_, Apr 13 2020
%Y Cf. A106400, A186027, A186028.
%K sign
%O 0,3
%A _Paul Barry_, Feb 10 2011
%E a(0)=1 inserted by _Michel Marcus_, May 16 2020