login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A186020 Eigentriangle of the binomial matrix. 10
1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 15, 9, 4, 1, 1, 52, 31, 14, 5, 1, 1, 203, 121, 54, 20, 6, 1, 1, 877, 523, 233, 85, 27, 7, 1, 1, 4140, 2469, 1101, 400, 125, 35, 8, 1, 1, 21147, 12611, 5625, 2046, 635, 175, 44, 9, 1, 1, 115975, 69161, 30846, 11226, 3488, 952, 236, 54, 10, 1, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

COMMENTS

Reversal of Gould triangle A121207. First column is A000110. Second column is A040027.

Row sums are A186021. Diagonal sums are A186022.

Construction is described by Paul D. Hanna in A121207. The method of construction is general for this class of eigentriangle.

LINKS

G. C. Greubel, Rows n = 0..100 of triangle, flattened

Paul Barry, Invariant number triangles, eigentriangles and Somos-4 sequences, arXiv:1107.5490 [math.CO], 2011.

Emeric Deutsch, Luca Ferrari, and Simone Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.

FORMULA

Lower triangular (infinite) matrix T = (U - D*P)^{-1} with the unit matrix U, the Pascal matrix P from A007318 and the matrix D with elements delta_{i,j+1}, for i, j >= 0 (row 0 has only 0s). From the Paul Barry paper rewritten in matrix notation. T satisfies P*T = D'*(T - U), with D' the transposed matrix D, that is the diagonal of T has been erased and the row index shifted on the r.h.s. (showing that the name Eigentriangle or -matrix is a misnomer). For finite N X N matrices P*T = D'*(T - U), only up to the last row. - Wolfdieter Lang, Apr 07 2021

EXAMPLE

Triangle T begins

       1;

       1,     1;

       2,     1,     1;

       5,     3,     1,     1;

      15,     9,     4,     1,    1;

      52,    31,    14,     5,    1,   1;

     203,   121,    54,    20,    6,   1,   1;

     877,   523,   233,    85,   27,   7,   1,  1;

    4140,  2469,  1101,   400,  125,  35,   8,  1,  1;

   21147, 12611,  5625,  2046,  635, 175,  44,  9,  1, 1;

  115975, 69161, 30846, 11226, 3488, 952, 236, 54, 10, 1, 1;

Inverse is the identity matrix I minus binomial matrix B shifted down once, or

T^{-1}(n,k)=if(k=n,1,if(k<n,-binomial(n-1,k),0)). This begins

   1;

  -1,  1;

  -1, -1,   1;

  -1, -2,  -1,   1;

  -1, -3,  -3,  -1,   1;

  -1, -4,  -6,  -4,  -1,   1;

  -1, -5, -10, -10,  -5,  -1,   1;

  -1, -6, -15, -20, -15,  -6,  -1,  1;

  -1, -7, -21, -35, -35, -21,  -7, -1,  1;

  -1, -8, -28, -56, -70, -56, -28, -8, -1, 1;

Production matrix is

      1,     1;

      1,     0,    1;

      2,     1,    0,    1;

      5,     3,    1,    0,   1;

     15,     9,    4,    1,   0,   1;

     52,    31,   14,    5,   1,   0,  1;

    203,   121,   54,   20,   6,   1,  0, 1;

    877,   523,  233,   85,  27,   7,  1, 0, 1;

   4140,  2469, 1101,  400, 125,  35,  8, 1, 0, 1;

  21147, 12611, 5625, 2046, 635, 175, 44, 9, 1, 0, 1;

MATHEMATICA

t[n_, k_] := t[n, k] = If[k == 0, 1, Sum[t[n-j, k-j] Binomial[n-1, j-1], {j, 1, k}]];

T[n_, k_] := t[n, n-k];

Table[T[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* Jean-Fran├žois Alcover, Jul 27 2018 *)

CROSSREFS

Cf. A000110, A007318, A121207, A124496, A160185, A186021, A186022.

Sequence in context: A062993 A105556 A078920 * A241579 A308292 A117396

Adjacent sequences:  A186017 A186018 A186019 * A186021 A186022 A186023

KEYWORD

nonn,easy,tabl

AUTHOR

Paul Barry, Feb 10 2011

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 25 01:40 EDT 2021. Contains 348233 sequences. (Running on oeis4.)