Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #45 May 09 2023 16:31:13
%S 1,1,1,1,3,1,1,7,6,1,1,16,24,10,1,1,39,86,61,15,1,1,105,307,313,129,
%T 21,1,1,314,1143,1520,891,242,28,1,1,1035,4513,7373,5611,2161,416,36,
%U 1,1,3723,18956,36627,34213,17081,4658,670,45,1,1,14494,84546,188396,208230,127540,45095,9187,1025,55,1
%N Triangle read by rows: number of set partitions of n elements with k connectors, 0<=k<n.
%H Alois P. Heinz, <a href="/A185982/b185982.txt">Rows n = 1..141, flattened</a>
%H T. Mansour and A. O. Munagi, <a href="http://dx.doi.org/10.1016/j.ejc.2009.07.001">Block-connected set partitions</a>, European J. Combin., 31 (2010), 887-902.
%e A connector is a pair (a, a+1) in a set partition if a is in block i and a+1 is in block i+1, for some i. For example a(4,1) = 7, counting 1/234, 13/2/4, 14/23, 134/2, 12/34, 124/3, 123/4.
%e Triangle begins:
%e 1;
%e 1, 1;
%e 1, 3, 1;
%e 1, 7, 6, 1;
%e 1, 16, 24, 10, 1;
%e 1, 39, 86, 61, 15, 1;
%e 1, 105, 307, 313, 129, 21, 1;
%e ...
%p b:= proc(n, i, m) option remember; `if`(n=0, 1, add(expand(
%p b(n-1, j, max(m, j))*`if`(j=i+1, x, 1)), j=1..m+1))
%p end:
%p T:= n-> (p-> seq(coeff(p, x, i), i=0..n-1))(b(n, 1, 0)):
%p seq(T(n), n=1..12); # _Alois P. Heinz_, Mar 25 2016
%t b[n_, i_, m_] := b[n, i, m] = If[n == 0, 1, Sum[b[n-1, j, Max[m, j]]*If[j == i+1, x, 1], {j, 1, m+1}]]; T[n_] := Function[p, Table[Coefficient[p, x, i], {i, 0, n-1}]][b[n, 1, 0]]; Table[T[n], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Apr 13 2016, after _Alois P. Heinz_ *)
%Y Columns k=0-10 give: A000012, A271788, A271789, A271790, A271791, A271792, A271793, A271794, A271795, A271796, A271797.
%Y Row sums give A000110.
%Y T(n+1,n-1) gives A000217.
%Y T(2n,n) gives A271841.
%Y Cf. A185983, A270953, A271206, A271270, A271271, A272064.
%K nonn,tabl
%O 1,5
%A _Brian Drake_, Feb 08 2011
%E More terms from _Alois P. Heinz_, Oct 11 2011