login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185977
Minimal number of parts of multiset repetition class defining partitions of n.
1
1, 2, 2, 3, 4, 3, 4, 5, 5, 4, 5, 6, 6, 7, 5, 6, 7, 7, 8, 8, 6, 7, 8, 8, 9, 10, 9, 7, 8, 9, 9, 10, 11, 10, 11, 8, 9, 10, 10, 11, 12, 11, 12, 13, 9, 10, 11, 11, 12, 13, 12, 13, 14, 14, 10, 11, 12, 12, 13, 14, 13, 14, 15, 15, 14, 11, 12, 13, 13, 14
OFFSET
1,2
COMMENTS
For the notion of m-multiset repetition class defining partitions of n see a comment in A185976 (with N replaced by n), and the characteristic array A176723 of such partitions in Abramowitz-Stegun order.
Note that there may be more than one multiset repetition class defining partition of n with minimal number of parts a(n). E.g., n=12, a(12)= 6, with two such partitions 1^2,2^2,3^2 and 1^3,2,3,4.
FORMULA
a(n)= min(sum(e[j],j=1..M)) with sum(j*e[j],j=1..M)=n, e[1]>=e[2]>=...>=e[M]>=1, and largest part M.
M takes all values from 1,...,Mmax(n), where Mmax(n) is the index of the largest triangular number from A000217 smaller or equal to n. E.g., Mmax(7) = 3.
EXAMPLE
The multiset repetition class defining partitions with minimal number of parts a(n) are, for n=1,...,12:
1^1; 1^2; 1,2; 1^2,2; 1^3,2; 1,2,3; 1^2,2,3; 1^3,2,3;
1^2,2^2,3; 1,2,3,4; 1^2,2,3,4;
1^3,2,3,4, 1^2,2^2,3^2;...
CROSSREFS
Sequence in context: A256094 A063712 A340458 * A204006 A369879 A106251
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Mar 07 2011
EXTENSIONS
Changed by the author in response to comments from Franklin T. Adams-Watters, Apr 02 2011.
STATUS
approved