Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #18 Feb 13 2018 02:49:21
%S 1,5,3,16,17,6,40,56,38,10,85,140,128,70,15,161,295,320,240,115,21,
%T 280,553,670,600,400,175,28,456,952,1246,1250,1000,616,252,36,705,
%U 1536,2128,2310,2075,1540,896,348,45,1045,2355,3408,3920,3815,3185,2240,1248,465,55,1496,3465,5190,6240,6440,5831,4620,3120,1680,605,66,2080,4928,7590,9450,10200,9800,8428,6420,4200,2200
%N Second accumulation array of A185877, by antidiagonals.
%C A member of the accumulation chain ... < A185879 < A185877 < A185878 < A185880 < ... See A144112 for the definition of accumulation array.
%H G. C. Greubel, <a href="/A185880/b185880.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%F T(n,k) = C(k,2)*C(n,2)*(3*k^2+4*k*n-k-4*n+16)/18, k>=1, n>=1.
%e Northwest corner:
%e 1, 5, 16, 40, 85
%e 3, 17, 56, 140, 295
%e 6, 38, 128, 320, 670
%e 10, 70, 240, 600, 1250
%t (* This program generates A185878 first and then generates A185880 as the accumulation array of A185878. *)
%t f[n_,k_]:=(k*n/6)(7-3k+2k^2-3n+3kn);
%t TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185878 *)
%t Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
%t s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}];
%t FullSimplify[s[n,k]]
%t TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185880 *)
%t f[n_, k_] := (1/72)*k*(1 + k)*n*(1 + n)*(16 - k + 3 *k^2 + 4 *(-1 + k) *n); Table[f[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* _G. C. Greubel_, Jul 21 2017 *)
%Y Cf. A144112, A185877, A185878.
%Y Antidiagonal sums: A037235.
%Y diag (1,5,...): A056108 (4th spoke on hexagonal wheel);
%Y diag (3,11,...): A056106 (2nd spoke on hexagonal wheel);
%Y diag (7,19,...): A003215 (hex numbers);
%Y diag (13,29,...): A144391.
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Feb 05 2011