The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A185830 Half the number of n X 4 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors 1
 2, 23, 118, 514, 2398, 11789, 54223, 257050, 1213538, 5716561, 26960702, 127201987, 599792318, 2828918061, 13342117403, 62924057051, 296766436047, 1399631468891, 6601012746804, 31132105093032, 146827124366034, 692474808791206 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Column 4 of A185835. LINKS R. H. Hardin, Table of n, a(n) for n = 1..200 Robert Israel, Maple-assisted proof of formula FORMULA Empirical: a(n) = 4*a(n-1) + 9*a(n-2) - 15*a(n-3) - 67*a(n-4) + 2*a(n-5) + 321*a(n-6) - 70*a(n-7) - 672*a(n-8) - 351*a(n-9) + 920*a(n-10) - 5077*a(n-11) + 733*a(n-12) + 28694*a(n-13) + 15849*a(n-14) - 28046*a(n-15) - 56805*a(n-16) + 89957*a(n-17) - 87270*a(n-18) + 85004*a(n-19) - 164885*a(n-20) + 188247*a(n-21) - 111655*a(n-22) + 89028*a(n-23) - 117971*a(n-24) + 115994*a(n-25) - 64896*a(n-26) + 52709*a(n-27) - 50206*a(n-28) + 31595*a(n-29) - 11233*a(n-30) + 1156*a(n-31) + 2585*a(n-32) - 5924*a(n-33) + 2841*a(n-34) - 817*a(n-35) + 361*a(n-36) - 42*a(n-37) - 6*a(n-38). Empirical formula verified (see link). - Robert Israel, Aug 15 2018 EXAMPLE Some solutions for 6 X 4 with a(1,1)=0: 0 0 0 0 0 0 1 1 0 0 1 0 0 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 0 0 0 1 0 1 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1 0 0 1 1 0 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 0 1 0 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 0 MAPLE Configs:= remove(t -> min(nops({t[1], t[2], t[3], t[6]}), nops({t[2], t[3], t[4], t[7]}), nops({t[2], t[5], t[6], t[7]}), nops({t[3], t[6], t[7], t[8]}))=1, [seq(convert(2^8+i, base, 2)[1..8], i=0..2^8-1)]): Compatible:= proc(i, j) local k; if Configs[i][5..8] <> Configs[j][1..4] or not member(numboccur(Configs[i][5], [Configs[i][1], Configs[i][6], Configs[j][5]]), {1, 2}) or not member(numboccur(Configs[i][6], [Configs[i][2], Configs[i][5], Configs[i][7], Configs[j][6]]), {1, 2}) or not member(numboccur(Configs[i][7], [Configs[i][3], Configs[i][6], Configs[i][8], Configs[j][7]]), {1, 2}) or not member(numboccur(Configs[i][8], [Configs[i][4], Configs[i][7], Configs[j][8]]), {1, 2}) then 0 else 1 fi; end proc: T:= Matrix(162, 162, Compatible): u:= Vector(162, proc(i) if member(numboccur(Configs[i][1], [Configs[i][2], Configs[i][5]]), {1, 2}) and member(numboccur(Configs[i][2], [Configs[i][1], Configs[i][3], Configs[i][6]]), {1, 2}) and member(numboccur(Configs[i][3], [Configs[i][2], Configs[i][4], Configs[i][7]]), {1, 2}) and member(numboccur(Configs[i][4], [Configs[i][3], Configs[i][8]]), {1, 2}) then 1 else 0 fi end proc) : v:= Vector(162, proc(i) if member(numboccur(Configs[i][5], [Configs[i][1], Configs[i][6]]), {1, 2}) and member(numboccur(Configs[i][6], [Configs[i][2], Configs[i][5], Configs[i][7]]), {1, 2}) and member(numboccur(Configs[i][7], [Configs[i][3], Configs[i][6], Configs[i][8]]), {1, 2}) and member(numboccur(Configs[i][8], [Configs[i][4], Configs[i][7]]), {1, 2}) then 1 else 0 fi end proc) : Tv[0]:= v: for n from 1 to 50 do Tv[n]:= T . Tv[n-1] od: [2, seq(u^%T . Tv[n]/2, n=0..50)]; # Robert Israel, Aug 15 2018 CROSSREFS Cf. A185835. Sequence in context: A229222 A143912 A041579 * A301665 A193981 A235594 Adjacent sequences: A185827 A185828 A185829 * A185831 A185832 A185833 KEYWORD nonn AUTHOR R. H. Hardin, Feb 05 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 14:49 EST 2022. Contains 358534 sequences. (Running on oeis4.)