Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Mar 12 2021 22:24:46
%S 5,12,36,48,84,72,144,96,180,156,216,12,336,168,288,288,372,216,468,
%T 240,504,384,36,288,720,372,504,480,672,360,864,384,756,48,648,576,
%U 1092,456,720,672,1080,504,1152,528,84,936,864,576,1488,684,1116,864,1176,648
%N Expansion of (11 * E_2(x^11) - E_2(x)) / 2 in powers of x where E_2() is an Eisenstein series.
%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
%D B. C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 480, Entry 8(i).
%D Carlos J. Moreno and Samuel S. Wagstaff, Jr., Sums of Squares of Integers, Chapman & Hall/CRC, Boca Raton, London, New York, p. 246 (corrected).
%H G. C. Greubel, <a href="/A185699/b185699.txt">Table of n, a(n) for n = 0..1000</a>
%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>
%F Expansion of 5 * (phi(x) * phi(x^11))^2 - 20 * x * (f(x) * f(x^11))^2 + 32 * x^2 * (f(-x^2) * f(-x^22))^2 - 20 * x^3 * (psi(-x) * psi(-x^11))^2 in powers of x where f(), phi(), psi() are Ramanujan theta functions.
%F Expansion of 5 + 12*Sum_{n>=1} Chi0(n)*n*q^n / (1 - q^n), where Chi0(n) = 1 if gcd(n,11) = 1 and 0 otherwise. See the Moreno-Wagstaff reference p. 246, second equation multiplied by 12 (a misprint has been corrected, after mail exchange with C. J. Moreno). - _Wolfdieter Lang_, Jan 02 2017
%e G.f. = 5 + 12*x + 36*x^2 + 48*x^3 + 84*x^4 + 72*x^5 + 144*x^6 + 96*x^7 + ...
%t terms = 54;
%t E2[x_] = 1 - 24*Sum[k*x^k/(1 - x^k), {k, 1, terms}];
%t (11*E2[x^11] - E2[x])/2 + O[x]^terms // CoefficientList[#, x]& (* _Jean-François Alcover_, Feb 27 2018 *)
%o (PARI) {a(n) = if( n<1, 5 * (n==0), 12 * (sigma( n) - if( n%11, 0, 11 * sigma( n / 11))))};
%Y Cf. A006352, A006571, A272196.
%K nonn,easy
%O 0,1
%A _Michael Somos_, Feb 10 2011