login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1+2x)*(1+2*x^2)/((1-x)*(1+x)*(1-2*x^2)).
1

%I #18 Jul 10 2017 02:21:41

%S 1,2,5,10,13,26,29,58,61,122,125,250,253,506,509,1018,1021,2042,2045,

%T 4090,4093,8186,8189,16378,16381,32762,32765,65530,65533,131066,

%U 131069,262138,262141,524282,524285,1048570,1048573,2097146,2097149,4194298,4194301

%N Expansion of (1+2x)*(1+2*x^2)/((1-x)*(1+x)*(1-2*x^2)).

%H G. C. Greubel, <a href="/A185647/b185647.txt">Table of n, a(n) for n = 0..5000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-2).

%F a(n) = a(n-1)*2 if n odd.

%F a(n) = a(n-1)+3 if n even.

%F a(2n) = 2^(n+2)-3 = A036563(n+2).

%F a(2n+1) = 2^(n+3)-6 = A131130(n+1).

%F a(n) = 3*a(n-2) - 2*a(n-4) with a(0)=1, a(1)=2, a(2)=5, a(3)=10.

%t LinearRecurrence[{0, 3, 0, -2}, {1, 2, 5, 10}, 50] (* _G. C. Greubel_, Jul 09 2017 *)

%o (PARI) x='x+O('x^50); Vec((1+2*x)*(1+2*x^2)/((1-x)*(1+x)*(1-2*x^2))) \\ _G. C. Greubel_, Jul 09 2017

%Y Cf. A036563, A131130

%K nonn,easy

%O 0,2

%A _Philippe Deléham_, Apr 23 2013