login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185641
Least k such that A098591(k) = n or 0 if no such k exists.
3
360, 161, 139, 44, 655, 186, 178, 184, 83, 265, 296, 153, 17, 464, 405, 485, 271, 61, 452, 54, 199, 190, 230, 78, 224, 131, 82, 355, 122, 372, 10, 2689, 528, 72, 173, 277, 116, 331, 101, 207, 632, 303, 37, 58, 136, 35, 48, 181, 151, 390, 243, 118, 237, 973
OFFSET
0,1
COMMENTS
Phil Carmody observed "7 must divide at least one of the terms. That's why (apart from the excluded k=0 range) only <=7 of the 8 terms can be prime. If 7 divides 30*k+1, it also divides 30*k+1+4*7." (See sci.math link.)
a(n)=0 for n = 127, 254 and 255.
The maximum value for a(n) is obtained for a(247)=22621.
LINKS
Phil Carmody, 7 primes in intervals [k*30,(k+1)*30], thread in newsgroup sci.math, Sep 19 2004.
Hugo Pfoertner, Patterns count table
EXAMPLE
a(0) = 360, because A098591(360) = 0 is the first occurrence of a 0 in A098591, indicating that there are no primes between 360*30 = 10800 and 10830, i.e., 10800 + {1,7,11,13,17,19,23,29} are composite.
MATHEMATICA
max = 10^5; A098591[n_] := Sum[ 2^k*Boole[ PrimeQ[ 30*n + {1, 7, 11, 13, 17, 19, 23, 29}[[k+1]] ] ], {k, 0, 7}]; a[n_] := Catch[ For[ k = 1, k <= max, k++, If[ A098591[k] == n, Throw[k], If[ k >= max, Throw[0]]]]]; Table[ Print[n, " ", an = a[n]]; an, {n, 0, 255}] (* Jean-François Alcover, Jan 31 2013 *)
CROSSREFS
Cf. A098591.
Sequence in context: A237017 A360943 A097570 * A352225 A031966 A137487
KEYWORD
nonn,fini,full
AUTHOR
Michel Marcus, Jan 31 2013
STATUS
approved