login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185624
Triangle, read by rows, equal to the matrix square of triangle A185620.
6
1, 2, 1, 3, 2, 1, 6, 7, 2, 1, 18, 28, 11, 2, 1, 79, 142, 66, 15, 2, 1, 463, 913, 470, 120, 19, 2, 1, 3396, 7244, 3997, 1098, 190, 23, 2, 1, 30073, 69004, 40079, 11587, 2122, 276, 27, 2, 1, 314037, 771359, 466448, 140092, 26707, 3638, 378, 31, 2, 1, 3796561, 9933242, 6208551, 1921122
OFFSET
0,2
EXAMPLE
Triangle begins:
1;
2, 1;
3, 2, 1;
6, 7, 2, 1;
18, 28, 11, 2, 1;
79, 142, 66, 15, 2, 1;
463, 913, 470, 120, 19, 2, 1;
3396, 7244, 3997, 1098, 190, 23, 2, 1;
30073, 69004, 40079, 11587, 2122, 276, 27, 2, 1;
314037, 771359, 466448, 140092, 26707, 3638, 378, 31, 2, 1;
3796561, 9933242, 6208551, 1921122, 377495, 53149, 5742, 496, 35, 2, 1; ...
This triangle equals the matrix square, R^2, of triangle R = A185620, which begins:
1;
1, 1;
1, 1, 1;
1, 3, 1, 1;
1, 10, 5, 1, 1;
1, 42, 27, 7, 1, 1;
1, 226, 173, 52, 9, 1, 1;
1, 1525, 1330, 442, 85, 11, 1, 1;
1, 12555, 12134, 4345, 897, 126, 13, 1, 1; ...
where R^3 - R^2 + I equals R shifted left one column.
PROG
(PARI) {T(n, k)=local(A=Mat(1), B); for(m=1, n, B=A^3-A^2+A^0; A=matrix(m+1, m+1); for(i=1, m+1, for(j=1, i, if(i<2|j==i, A[i, j]=1, if(j==1, A[i, j]=1, A[i, j]=B[i-1, j-1]))))); return((A^2)[n+1, k+1])}
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Paul D. Hanna, Sep 07 2011
STATUS
approved