login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of Born's basic potential Pi_0.
8

%I #25 Mar 11 2018 05:58:21

%S 2,8,3,7,2,9,7,4,7,9,4,8,0,6,1,9,4,7,6,6,6,5,9,1,7,1,0,4,6,0,7,7,3,8,

%T 8,2,2,3,8,9,2,1,8,7,0,2,1,5,8,4,8,3,5,9,9,0,0,3,7,1,9,0,0,6,9,9,9,2,

%U 4,7,7,1,1,1,6,2,2,7,3,3,0,9,4,7,4,0,4,1,5,3,0,7,9,2,7,1,1,0,3,5

%N Decimal expansion of Born's basic potential Pi_0.

%C Decimal expansion of Sum'_{m,n,p = -infinity..infinity} 1/(m^2 + n^2 + p^2)^s, analytic continuation to s=1/2. The prime at the sum symbol means the term at m=n=p=0 is omitted.

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Sections 1.10 Madelung's constant, p. 79.

%H Y. Sakamoto, <a href="https://doi.org/10.1063/1.1744060">Madelung constants of simple crystals expressed in terms of Born's basic potentials of 15 figures</a>, J. Chem. Phys. 28 (1958) 164, variable Pi_0.

%H I. J. Zucker, <a href="https://dx.doi.org/10.1088/0305-4470/8/11/008">Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures</a>, J. Phys. A: Math. Gen. 8 (11) (1975) 1734, variable a(1).

%H I. J. Zucker, <a href="http://dx.doi.org/10.1088/0305-4470/9/4/006">Functional equations for poly-dimensional zeta functions and the evaluation of Madelung constants</a>, J. Phys. A: Math. Gen. 9 (4) (1976) 499, variable a(1).

%F Equals A085469/3 + A185577 + A185578.

%e 2.8372974794806194766659171046...

%t digits = 100; k0 = 10; dk = 10; Clear[s]; s[k_] := s[k] = 7*(Pi/6) - 19/2*Log[2] + 4*Sum[(3 + 3*(-1)^m + (-1)^(m + n)) * Csch[Pi*Sqrt[m^2 + n^2]]/Sqrt[m^2 + n^2], {m, 1, k}, {n, 1, k}] // N[#, digits + 10] &; s[k0]; s[k = k0 + dk]; While[RealDigits[s[k], 10, digits + 5][[1]] != RealDigits[s[k - dk], 10, digits + 5][[1]], Print["s(", k, ") = ", s[k]]; k = k + dk]; RealDigits[s[k], 10, digits] // First (* _Jean-François Alcover_, Sep 10 2014 *)

%Y Cf. A185577, A185578, A185579, A185580, A185581, A185582, A185583.

%K cons,nonn

%O 1,1

%A _R. J. Mathar_, Jan 31 2011

%E More terms from _Jean-François Alcover_, Sep 10 2014