Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Nov 23 2017 19:38:25
%S 1,5,6,16,29,21,41,89,99,56,91,219,295,259,126,182,469,705,755,574,
%T 252,336,910,1470,1765,1645,1134,462,582,1638,2786,3605,3780,3206,
%U 2058,792,957,2778,4914,6706,7595,7266,5754,3498,1287,1507,4488,8190,11634,13916,14406,12894,9690,5643,2002,2288,6963,13035,19110,23814,26068,25284,21510,15510,8723,3003,3367,10439,19965,30030,38640,44100
%N Third accumulation array, T, of the natural number array A000027, by antidiagonals.
%C See A144112 (and A185506) for the definition of accumulation array (aa).
%C Sequence is aa(aa(aa(A000027))).
%H G. C. Greubel, <a href="/A185508/b185508.txt">Table of n, a(n) for the first 50 rows, flattened</a>
%F T(n,k) = F*(4n^2 + (5k+23)n + 4k^2 + 3k+41), where F = k(k+1)(k+2)n(n+1)(n+2)/2880.
%e Northwest corner:
%e 1 5 16 41 91 182
%e 6 29 89 219 469 910
%e 21 99 295 705 1470 2786
%e 56 259 755 1765 3605 6706
%t h[n_,k_]:=k(k+1)(k+2)n(n+1)(n+2)*(4n^2+(5k+23)n+4k^2+3k+41)/2880;
%t TableForm[Table[h[n,k],{n,1,10},{k,1,15}]]
%t Table[h[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
%o (PARI) {h(n,k) = k*(k+1)*(k+2)*n*(n+1)*(n+2)*(4*n^2+(5*k+23)*n +4*k^2 +3*k + 41)/2880}; for(n=1,10, for(k=1,n, print1(h(k, n-k+1), ", "))) \\ _G. C. Greubel_, Nov 23 2017
%Y Cf. A000027, A185506, A185507, A185509.
%Y Cf. A000389 (column 1), A257199 (row 1).
%K nonn,tabl
%O 1,2
%A _Clark Kimberling_, Jan 29 2011