Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #5 Mar 31 2012 12:36:01
%S 13659,76309,308692,1043186,3097348,8297059,20411234,46732687,
%T 100636591,205574323,401123377,751921908,1360579387,2385984676,
%U 4068843506,6766785098,11002001311,17525142877,27400120766,42115574722,63730107482
%N Number of (n+2)X5 0..2 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order
%C Column 3 of A185477
%H R. H. Hardin, <a href="/A185471/b185471.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = (1/444787200)*n^13
%F + (107/479001600)*n^12
%F + (11/1088640)*n^11
%F + (3623/6220800)*n^10
%F + (78227/3628800)*n^9
%F + (6420917/14515200)*n^8
%F + (148481/27216)*n^7
%F + (1861160843/43545600)*n^6
%F + (4966108109/21772800)*n^5
%F + (1448539279/1555200)*n^4
%F + (3663351401/1330560)*n^3
%F + (2013261953/415800)*n^2
%F + (15650889/3640)*n
%F + 556
%e Some solutions for 4X5
%e ..0..0..0..1..2....0..0..0..0..0....0..0..0..0..2....0..0..0..1..1
%e ..0..0..1..1..2....0..0..1..2..2....0..0..0..2..2....0..0..0..1..2
%e ..0..1..1..2..0....1..1..2..1..1....0..0..1..0..1....0..1..1..1..2
%e ..2..1..2..0..2....2..2..2..1..2....1..2..2..1..1....1..1..2..2..2
%K nonn
%O 1,1
%A _R. H. Hardin_ Jan 28 2011