login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 2^n - 9.
9

%I #28 Nov 08 2023 06:35:40

%S -8,-7,-5,-1,7,23,55,119,247,503,1015,2039,4087,8183,16375,32759,

%T 65527,131063,262135,524279,1048567,2097143,4194295,8388599,16777207,

%U 33554423,67108855,134217719,268435447,536870903,1073741815,2147483639,4294967287,8589934583

%N a(n) = 2^n - 9.

%H G. C. Greubel, <a href="/A185346/b185346.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (3,-2).

%F G.f.: ( -8+17*x ) / ( (2*x-1)*(x-1) ). - _R. J. Mathar_, Dec 17 2012

%F E.g.f.: exp(2*x) - 9*exp(x). - _G. C. Greubel_, Jun 28 2017

%F From _Elmo R. Oliveira_, Nov 08 2023: (Start)

%F a(n) = 2*a(n-1) + 9 with a(0) = -8.

%F a(n) = 3*a(n-1) - 2*a(n-2) for n > 1. (End)

%p A185346:=n->2^n-9: seq(A185346(n), n=0..50); # _Wesley Ivan Hurt_, Jun 28 2017

%t Table[2^n - 9, {n, 0, 40}] (* _T. D. Noe_, Dec 04 2012 *)

%o (PARI) a(n)=2^n-9 \\ _Charles R Greathouse IV_, Oct 07 2015

%Y Cf. A000225, A036563, A172252 (essentially the same).

%K sign,easy

%O 0,1

%A _Andreas Rieber_, Dec 04 2012