login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators of u(n) where u(n) = (u(n-1) + u(n-2)) / u(n-3), with u(1) = u(2) = u(3) = 1.
5

%I #27 Mar 19 2017 07:04:15

%S 1,1,1,2,3,5,4,3,7,11,5,29,155,224,639,3787,1837,2855,32393,97309,

%T 127512,1825907,13672693,12048382,61067879,1364331725,942450221,

%U 3863275086,126646632559,699156998051,2194555785960,61774183992421

%N Numerators of u(n) where u(n) = (u(n-1) + u(n-2)) / u(n-3), with u(1) = u(2) = u(3) = 1.

%H Seiichi Manyama, <a href="/A185332/b185332.txt">Table of n, a(n) for n = 1..262</a>

%F a(4 - n) = a(n) for all n in Z.

%F 0 = u(n) * u(n+3) - u(n+1) - u(n+2) for all n in Z. - _Michael Somos_, Nov 01 2014

%e u(1), ... = 1, 1, 1, 2, 3, 5, 4, 3, 7/5, 11/10, 5/6, 29/21, 155/77, 224/55, 639/145, ...

%t Numerator[RecurrenceTable[{a[1]==a[2]==a[3]==1,a[n]==(a[n-1]+a[n-2])/ a[n-3]}, a,{n,40}]] (* _Harvey P. Dale_, Jan 28 2013 *)

%o (PARI) {a(n) = local(v = [1, 1, 1]); if( n<1, n = 4-n); if( n<4, 1, for( k=4, n, v = [v[2], v[3], (v[2] + v[3]) / v[1]]); numerator( v[3] ))};

%Y Cf. A068508, A185341, A205303.

%K nonn,frac

%O 1,4

%A _Michael Somos_, Jan 27 2012