login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions of n into parts >= 6.
22

%I #30 Dec 01 2024 10:03:50

%S 1,0,0,0,0,0,1,1,1,1,1,1,2,2,3,3,4,4,6,6,8,9,11,12,16,17,21,24,29,32,

%T 40,44,53,60,71,80,96,107,126,143,167,188,221,248,288,326,376,424,491,

%U 552,634,716,819,922,1056,1187,1353,1523,1730,1944,2209,2478,2806,3151

%N Number of partitions of n into parts >= 6.

%C a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 6 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.

%C By removing a single part of size 6, an A026799 partition of n becomes an A185326 partition of n - 6. Hence this sequence is essentially the same as A026799.

%H Jason Kimberley, <a href="/A185326/b185326.txt">Table of n, a(n) for n = 0..998</a>

%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/E_k-reg_girth_ge_g_index">Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g</a>

%F G.f.: Product_{m>=6} 1/(1-x^m).

%F a(n) = p(n) - p(n-1) - p(n-2) + p(n-5) + p(n-6) + p(n-7) - p(n-8) - p(n-9) - p(n-10) + p(n-13) + p(n-14) - p(n-15) where p(n) = A000041(n).

%F a(n) = A185226(n) + A185116(n).

%F This sequence is the Euler transformation of A185116.

%F a(n) ~ exp(Pi*sqrt(2*n/3)) * 5*Pi^5 / (18*sqrt(2)*n^(7/2)). - _Vaclav Kotesovec_, Jun 02 2018

%F G.f.: Sum_{k>=0} x^(6*k) / Product_{j=1..k} (1 - x^j). - _Ilya Gutkovskiy_, Nov 28 2020

%F G.f.: 1 + Sum_{n >= 1} x^(n+5)/Product_{k = 0..n-1} (1 - x^(k+6)). - _Peter Bala_, Dec 01 2024

%p seq(coeff(series(1/mul(1-x^(m+6), m = 0..80), x, n+1), x, n), n = 0..70); # _G. C. Greubel_, Nov 03 2019

%t CoefficientList[Series[1/QPochhammer[x^6, x], {x, 0, 75}], x] (* _G. C. Greubel_, Nov 03 2019 *)

%o (Magma) A185326 := func<n|#RestrictedPartitions(n,{6..n})>;

%o (Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+6): m in [0..80]]) )); // _G. C. Greubel_, Nov 03 2019

%o (PARI) my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+6))) \\ _G. C. Greubel_, Nov 03 2019

%o (Sage)

%o def A185326_list(prec):

%o P.<x> = PowerSeriesRing(ZZ, prec)

%o return P( 1/product((1-x^(m+6)) for m in (0..80)) ).list()

%o A185326_list(70) # _G. C. Greubel_, Nov 03 2019

%Y 2-regular simple graphs with girth at least 6: A185116 (connected), A185226 (disconnected), this sequence (not necessarily connected).

%Y Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), A185325(g=5), this sequence (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).

%Y Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).

%K nonn,easy

%O 0,13

%A _Jason Kimberley_, Jan 30 2012