Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #56 Dec 01 2024 10:03:41
%S 1,0,0,0,0,1,1,1,1,1,2,2,3,3,4,5,6,7,9,10,13,15,18,21,26,30,36,42,50,
%T 58,70,80,95,110,129,150,176,202,236,272,317,364,423,484,560,643,740,
%U 847,975,1112,1277,1456,1666,1897,2168,2464,2809,3189,3627,4112,4673
%N Number of partitions of n into parts >= 5.
%C a(n) is also the number of not necessarily connected 2-regular graphs on n-vertices with girth at least 5 (all such graphs are simple). The integer i corresponds to the i-cycle; addition of integers corresponds to disconnected union of cycles.
%C By removing a single part of size 5, an A026798 partition of n becomes an A185325 partition of n - 5. Hence this sequence is essentially the same as A026798.
%C a(n) = number of partitions of n+4 such that 4*(number of parts) is a part. - _Clark Kimberling_, Feb 27 2014
%H G. C. Greubel, <a href="/A185325/b185325.txt">Table of n, a(n) for n = 0..1000</a>
%H Kevin Beanland and Hung Viet Chu, <a href="https://arxiv.org/abs/2311.01926">On Schreier-type Sets, Partitions, and Compositions</a>, arXiv:2311.01926 [math.CO], 2023.
%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/E_k-reg_girth_ge_g_index">Index of sequences counting not necessarily connected k-regular simple graphs with girth at least g</a>
%F G.f.: Product_{m>=5} 1/(1-x^m).
%F Given by p(n) -p(n-1) -p(n-2) +2*p(n-5) -p(n-8) -p(n-9) +p(n-10), where p(n) = A000041(n). - _Shanzhen Gao_, Oct 28 2010 [sign of 10 corrected from + to -, and moved from A026798 to this sequence by _Jason Kimberley_].
%F This sequence is the Euler transformation of A185115.
%F a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi^4 / (6*sqrt(3)*n^3). - _Vaclav Kotesovec_, Jun 02 2018
%F G.f.: exp(Sum_{k>=1} x^(5*k)/(k*(1 - x^k))). - _Ilya Gutkovskiy_, Aug 21 2018
%F G.f.: 1 + Sum_{n >= 1} x^(n+4)/Product_{k = 0..n-1} (1 - x^(k+5)). - _Peter Bala_, Dec 01 2024
%p seq(coeff(series(1/mul(1-x^(m+5), m = 0..80), x, n+1), x, n), n = 0..70); # _G. C. Greubel_, Nov 03 2019
%t Drop[Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, 4*Length[p]]], {n, 40}], 3] (* _Clark Kimberling_, Feb 27 2014 *)
%t CoefficientList[Series[1/QPochhammer[x^5, x], {x, 0, 70}], x] (* _G. C. Greubel_, Nov 03 2019 *)
%o (Magma)
%o p := func< n | n lt 0 select 0 else NumberOfPartitions(n) >;
%o A185325 := func<n | p(n)-p(n-1)-p(n-2)+2*p(n-5)-p(n-8)-p(n-9)+p(n-10)>;
%o [A185325(n):n in[0..60]];
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 70); Coefficients(R!( 1/(&*[1-x^(m+5): m in [0..80]]) )); // _G. C. Greubel_, Nov 03 2019
%o (PARI) my(x='x+O('x^70)); Vec(1/prod(m=0,80, 1-x^(m+5))) \\ _G. C. Greubel_, Nov 03 2019
%o (Sage)
%o def A185325_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( 1/product((1-x^(m+5)) for m in (0..80)) ).list()
%o A185325_list(70) # _G. C. Greubel_, Nov 03 2019
%Y 2-regular simple graphs with girth at least 5: A185115 (connected), A185225 (disconnected), this sequence (not necessarily connected).
%Y Not necessarily connected 2-regular graphs with girth at least g [partitions into parts >= g]: A026807 (triangle); chosen g: A000041 (g=1 -- multigraphs with loops allowed), A002865 (g=2 -- multigraphs with loops forbidden), A008483 (g=3), A008484 (g=4), this sequence (g=5), A185326 (g=6), A185327 (g=7), A185328 (g=8), A185329 (g=9).
%Y Not necessarily connected 2-regular graphs with girth exactly g [partitions with smallest part g]: A026794 (triangle); chosen g: A002865 (g=2), A026796 (g=3), A026797 (g=4), A026798 (g=5), A026799 (g=6), A026800(g=7), A026801 (g=8), A026802 (g=9), A026803 (g=10).
%Y Not necessarily connected k-regular simple graphs with girth at least 5: A185315 (any k), A185305 (triangle); specified degree k: this sequence (k=2), A185335 (k=3).
%Y Cf. A008484, A008483.
%K nonn,easy
%O 0,11
%A _Jason Kimberley_, Nov 11 2011