login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185323
E.g.f. A(x) = 1/(2-tan(x)-sec(x)).
1
1, 1, 3, 14, 87, 676, 6303, 68564, 852387, 11921476, 185259603, 3166825364, 59054916687, 1193026564276, 25955467164903, 605021502144164, 15043243752072987, 397412126087559076, 11116403953041202203, 328222705791221254964
OFFSET
0,3
LINKS
Vladimir Kruchinin, D. V. Kruchinin, Composita and their properties, arXiv:1103.2582 [math.CO], 2011.
FORMULA
a(n) = Sum_{k=1..n} k!*A147315(n,k), n>0. a(0)=1.
E.g.f.: 1 + x/(U(0)-x) where U(k)= 4*k+1 - x/(2 - x/(4*k+3 + x/(2 + x/U(k+1))));(continued fraction, 4-step). - Sergei N. Gladkovskii, Nov 08 2012
a(n) ~ n! * 2/(5*arctan(3/4)^(n+1)). - Vaclav Kotesovec, Sep 25 2013
MAPLE
T:= proc(n, k) option remember;
if k=n then 1
elif k<0 or k>n then 0
else T(n-1, k-1) +k*T(n-1, k) +k*(k+1)/2 *T(n-1, k+1)
fi
end:
a:= n-> add(k! * T(n, k), k=0..n):
seq(a(n), n=0..30); # Alois P. Heinz, Feb 18 2011
MATHEMATICA
CoefficientList[Series[1/(2-Tan[x]-Sec[x]), {x, 0, 20}], x]* Range[0, 20]! (* Vaclav Kotesovec, Sep 25 2013 *)
PROG
(PARI) x = 'x + O('x^30); Vec(serlaplace(1/(2-tan(x)-1/cos(x)))) \\ Michel Marcus, Jun 27 2017
CROSSREFS
Sequence in context: A121587 A332256 A335849 * A222714 A199548 A355294
KEYWORD
nonn
AUTHOR
Vladimir Kruchinin, Feb 17 2011
STATUS
approved