login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

10^n - second largest prime less than 10^n.
1

%I #21 Jul 19 2024 21:39:18

%S 5,11,9,33,11,21,27,29,71,57,53,39,137,29,53,83,23,33,57,27,113,71,53,

%T 303,321,249,107,261,53,17,81,119,47,513,237,179,123,123,173,27,203,

%U 137,119,77,119,147,83,47,183,161,333,339,611,579

%N 10^n - second largest prime less than 10^n.

%D D. E. Knuth, The Art of Computer Programming, Second Edition, Vol. 2, Seminumerical Algorithms, Chapter 4.5.4 Factoring into Primes, Table 1, Page 390, Addison-Wesley, Reading, MA, 1981.

%H Robert Israel, <a href="/A185201/b185201.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = 10^n - precprime(precprime(10^n)-1)

%e a(1) = 5 because precprime(10) = 7, and precprime(6) = 5.

%e From _M. F. Hasler_, Jul 19 2024: (Start)

%e Further examples: (where pp = prevprime = A151799)

%e n | pp(pp(10^n)) | a(n)

%e ----+-----------------+------

%e 1 | 5 | 5

%e 2 | 89 | 11

%e 3 | 991 | 9

%e 4 | 9967 | 33

%e 5 | 99989 | 11

%e 6 | 999979 | 21

%e 7 | 9999973 | 27

%e 8 | 99999971 | 29

%e 9 | 999999929 | 71

%e 10 | 9999999943 | 57

%e 11 | 99999999947 | 53

%e 12 | 999999999961 | 39

%e 13 | 9999999999863 | 137

%e 14 | 99999999999971 | 29

%e 15 | 999999999999947 | 53

%e (End)

%p seq(10^n - prevprime(prevprime(10^n)),n=1..100); # _Robert Israel_, May 28 2017

%t Table[10^n - NextPrime[10^n, -2], {n,1,50}] (* _G. C. Greubel_, Jun 24 2017 *)

%o (PARI) apply( {A185201(n)=10^n-precprime(precprime(10^n)-1)}, [1..66]) \\ _M. F. Hasler_, Jul 19 2024

%Y Cf. A033874.

%Y Cf. A003618 (largest prime < 10^n), A151799 (prevprime function).

%K nonn

%O 1,1

%A _Washington Bomfim_, Jan 24 2012