login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Steps of the Hare in each tied Hare and Tortoise race of length n.
1

%I #16 Apr 08 2020 00:08:14

%S 1,0,2,1,1,0,0,3,0,2,1,1,0,2,1,1,1,0,0,0,4,0,0,3,1,0,2,0,2,0,2,1,1,1,

%T 0,0,3,1,0,2,1,1,1,0,2,1,1,1,1,0,0,0,0,5,0,0,0,4,1,0,0,3,0,2,0,0,3,1,

%U 1,0,2,0,0,3,0,2,0,2,1,0,2,1,0,2,0,2,1,1,1,1,0,0,0,4,1,0,0,3,1,1,0,2,0,2,1,0,2,1,1,1,1,0,0,3,1,1,0,2,1,1,1,1,0,2,1,1,1,1,1,0,0,0,0,0

%N Steps of the Hare in each tied Hare and Tortoise race of length n.

%C When the Hare bothers to move it only ever just catches up to the Tortoise.

%C This is an intermediate sequence between A030302 and A066099: omit the 0's from this sequence and we obtain A066099; map nonzero terms in this sequence to 1 and we obtain A030302.

%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/A185184">Bits, flows, and compositions</a>

%F a(i) = A030302(i) + number of consecutive 0 terms immediately preceding A030302(i).

%e The table begins:

%e 1;

%e 0 2, 1 1;

%e 0 0 3, 0 2 1, 1 0 2, 1 1 1;

%e 0 0 0 4, 0 0 3 1, 0 2 0 2, 0 2 1 1, 1 0 0 3, 1 0 2 1, 1 1 0 2, 1 1 1 1;

%e 0 0 0 0 5, 0 0 0 4 1, 0 0 3 0 2, 0 0 3 1 1, 0 2 0 0 3, 0 2 0 2 1, 0 2 1 0 2, 0 2 1 1 1, 1 0 0 0 4, 1 0 0 3 1, 1 0 2 0 2, 1 0 2 1 1, 1 1 0 0 3, 1 1 0 2 1, 1 1 1 0 2, 1 1 1 1 1;

%e Mapping between sequences:

%e A030302: 110111001011101111000100110101011110011011110111110000100011

%e A185184: 10211003021102111000400310202021110031021110211110000500041

%e A066099: 1 211 3 211 2111 4 31 2 2 2111 31 2111 21111 5 41

%K nonn,easy,tabf

%O 1,3

%A _Jason Kimberley_, Feb 27 2012