%I #19 Sep 03 2023 11:12:51
%S 1,1,2,1,3,1,8,4,5,1,30,1,5,5,260,1,43,1,57,7,4,1,1930,8,10,99,93,1,
%T 223,1
%N a(n) = maximal number of different Galois groups with that same order for polynomials of degree n.
%C For prime p, a(p)=1.
%C For nonprime n, the most frequently seen orders are:
%C 4 = 4,
%C 6 = 24,
%C 8 = 32,
%C 9 = 54,
%C 10 = 200,
%C 12 = 192,
%C 14 = 2688,
%C 15 = 360,
%C 16 = 256,
%C 18 = 1296,
%C 20 = {5120,40000},
%C 21 = 30618,
%C 22 = 2420,
%C 24 = 1536,
%C 25 = {500,2500,12500},
%C 26 = 4056,
%C 27 = 4374,
%C 28 = 114688,
%C 30 = 24000000
%e a(4)=2 because for polynomials of degree 4, there are two different groups of order 4.
%e a(20)=57 because for polynomials of degree 20, there are 57 different groups of order 5120 and 57 different groups of order 40000.
%Y Cf. A002106, A177244, A186277, A186306, A186307, A186308.
%K nonn,hard
%O 2,3
%A _Artur Jasinski_, Feb 19 2011