login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A185161
G.f. = 1/(1-g(x)) where g(x) is the g.f. for A141309.
0
1, 2, 7, 36, 283, 2898, 36169, 524976, 8659186, 159736316, 3257811334, 72797444280, 1769125982092, 46466434382032, 1311960028913384, 39633438764146568, 1275742281105759813, 43593785716301112538, 1576217593145774955007
OFFSET
0,2
LINKS
Jean-Christophe Novelli and Jean-Yves Thibon, Free quasi-symmetric functions and descent algebras for wreath products, and noncommutative multi-symmetric functions (2008); arXiv:0806.3682 [math.CO], 2008; Discrete Math. 310 (2010), no. 24, 3584-3606. See Eq. 37.
MATHEMATICA
terms = 19;
c[0] = 0; c[n_] := c[n] = n! - Sum[k! c[n - k], {k, 1, n - 1}];
s = (Product[1/(1 - x^k)^(2^k c[k]), {k, 1, terms}] + O[x]^terms - 1)/x;
g[x_] = ((-1/(1 + x s) + O[x]^terms) + 1);
CoefficientList[1/(1 - g[x]) + O[x]^terms, x] (* Jean-François Alcover, Feb 13 2019 *)
CROSSREFS
Cf. A141309.
Sequence in context: A123549 A009704 A141308 * A012712 A012363 A012717
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 23 2012
STATUS
approved