login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(4*n) = n*(4*n-1); a(2*n+1) = n*(n+1)/2; a(4*n+2) = (2*n+1)*(4*n+1).
2

%I #57 Aug 12 2022 09:22:26

%S 0,0,1,1,3,3,15,6,14,10,45,15,33,21,91,28,60,36,153,45,95,55,231,66,

%T 138,78,325,91,189,105,435,120,248,136,561,153,315,171,703,190,390,

%U 210,861,231,473,253,1035,276,564,300,1225,325

%N a(4*n) = n*(4*n-1); a(2*n+1) = n*(n+1)/2; a(4*n+2) = (2*n+1)*(4*n+1).

%C a(n) is divisible by the n-th term of the sequence 3, 3, 1, 1, 3, 3 (periodically repeated with period 6).

%C a(n) is divisible by b(floor((n-1)/3)), where b(n) = 1, 3, 2, 3, 7, 3, 5, 3, 13, 3, 8, 3, 19, 3,... , n>=0, is defined by inserting a 3 after each entry of A165355.

%C (n+1)*(n+2)*(n+3)/2=3*A000292(n+1) is divisible by a(n+2), so there is an integer sequence c(n)= 3*A000292(n+1)/a(n+2) = 3, 12, 10, 20, 7, 28, 18,... with c(2*n)=A123167(n+1) and c(n)/A109613(n+2)=A176895(n).

%C The sequence of denominators of a(n+2)/n has period length 8: 1, 2, 1, 4, 1, 1, 1, 4.

%C A table T(k,c) = a(1+c*(1+2k)) of (2*k+1)-sections starts as follows:

%C 0 1 1 3 3 15...

%C 0 3 6 45 21 60...

%C 0 15 15 60 55 325...

%C 0 14 28 231 105 315...

%C 0 45 45 189 171 1035...

%C The table of T'(k,c) = T(k,c)/(2k+1), columns c>=0, looks as follows, construction similar to A165943:

%C 0 1 1 3 3 15 6 14 k=0

%C 0 1 2 15 7 20 15 77 k=1

%C 0 3 3 12 11 65 24 63 k=2

%C 0 2 4 33 15 45 33 175 k=3

%C 0 5 5 21 19 115 42 112 k=4

%C 0 3 6 51 23 70 51 273 k=5

%C The entries T'(k,c) are divisible by A060819(c).

%C Differences are T'(2,c)-T'(0,c) = T'(4,c)-T'(2,c) = 0, 2, 2, 9, 8, 50, 18, 49, 32, ... which is A168077(c) multiplied by the c-th term of the period-4 sequence 2, 2, 2, 1.

%C Differences are T'(3,c)- T'(1,c) = T'(5,c)-T'(3,c) = 0, 1, 2, 18, 8, 25, 18, 98, 32,... which is A168077(c) multiplied by the period-4 sequence 2, 1, 2, 2.

%C The reduced fractions T'(0,c)/T'(1,c) = 1, 1/2, 1/5, 3/7, 3/4, 2/5, 2/11, 5/13, 5/7, 3/8, 3/17, 7/19, .., c>=1, have a numerator sequence A026741(floor(c/2)+1). The denominator sequence is f(c) = 1, 2, 5, 7, 4, 5,.. = A001651(c+1)/A130658(c+1), with f(2*c+1) +f(2*c+2) = 3, 12, 9, 24 .. =3*A022998(c).

%H G. C. Greubel, <a href="/A185138/b185138.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_12">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,0,3,0,0,0,-3,0,0,0,1).

%F a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12).

%F a(2*n) = A064038(2*n), a(2*n+1) = A000217(n).

%F a(n) = 3*A208950(n)/A109613(n).

%F a(n+1) = A060819(n) * A026741(n+2)(floor(n/2)).

%F G.f.: -x^2*(3*x^8+x^7+5*x^6+3*x^5+12*x^4+3*x^3+3*x^2+x+1)/ ((x-1)^3*(x+1)^3*(x^2+1)^3). - _R. J. Mathar_, Mar 22 2012

%F a(n) = (4*n^2-3*n-1+(2*n^2-3*n+1)*(-1)^n + n*(n-1)*(1+(-1)^n)*(-1)^((2*n-3-(-1)^n)/4))/16. - _Luce ETIENNE_, May 13 2016

%F Sum_{n>=2} 1/a(n) = 2 - Pi/4 + 7*log(2)/2. - _Amiram Eldar_, Aug 12 2022

%p A185138 := proc(n)

%p if n mod 4 = 0 then

%p return n/4*(n-1) ;

%p elif n mod 2 = 1 then

%p return (n-1)*(n+1)/8 ;

%p else

%p return (n-1)*n/2 ;

%p end if;

%p end proc: # _R. J. Mathar_, Apr 05 2012

%t Clear[b];b[1] = 0; b[2] = 0; b[3] = 1; b[4] = 1; b[5] = 3; b[6] = 3; b[7] = 15;b[8] = 6;b[n_Integer] := b[n] = ((-2 + n) (-4 (-4 + n) (-3 + n) (-2 + n) (8 + n (-9 + 2 n)) b[-3 + n] + (-5 + n) ((-3 +n) ((-4 + n) (211 + 2 n (-215 + n (147 + n (-41 + 4 n)))) - 4 (-1 + n) (19 + n (-13 + 2 n)) b[-2 + n]) - 4 (-4 + n)^2 (8 + n (-9 + 2 n)) b[-1 + n])))/(4 (-5 + n) (-4 + n) (-3 + n)^2 (19 + n (-13 + 2 n)))

%t a = Table[b[n], {n, 1, 52}] (* _Roger L. Bagula_, Mar 14 2012 *)

%t LinearRecurrence[{0,0,0,3,0,0,0,-3,0,0,0,1},{0,0,1,1,3,3,15,6,14,10,45,15},60] (* _Harvey P. Dale_, Nov 23 2015 *)

%o (PARI) x='x+O('x^50); concat([0,0], Vec(-x^2*(3*x^8+x^7+5*x^6+3*x^5+12*x^4+3*x^3+3*x^2+x+1)/ ((x-1)^3*(x+1)^3*(x^2+1)^3))) \\ _G. C. Greubel_, Jun 23 2017

%Y Cf. A000217, A014634, A026741, A033991, A064038, A060819, A165355, A208950.

%K nonn,easy,less

%O 0,5

%A _Paul Curtz_, Mar 12 2012