%I #19 Jun 15 2024 18:41:37
%S 1,0,0,0,0,0,0,0,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%T 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,
%U 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1
%N Number of connected 2-regular simple graphs on n vertices with girth at least 8.
%C Decimal expansion of 90000001/900000000. - _Elmo R. Oliveira_, May 29 2024
%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_girth_ge_8">Connected regular graphs with girth at least 8</a>.
%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a>.
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (1).
%F a(0)=1; for 0 < n < 8 a(n)=0; for n >= 8, a(n)=1.
%F This sequence is the inverse Euler transformation of A185328.
%F G.f.: (x^8-x+1)/(1-x). - _Elmo R. Oliveira_, May 29 2024
%e The null graph is vacuously 2-regular and, being acyclic, has infinite girth.
%e There are no 2-regular simple graphs with 1 or 2 vertices.
%e The n-cycle has girth n.
%Y 2-regular simple graphs with girth at least 8: this sequence (connected), A185228 (disconnected), A185328 (not necessarily connected).
%Y Connected k-regular simple graphs with girth at least 8: A186728 (any k), A186718 (triangle); specific k: this sequence (k=2), A014376 (k=3).
%Y Connected 2-regular simple graphs with girth at least g: A179184 (g=3), A185114 (g=4), A185115 (g=5), A185116 (g=6), A185117 (g=7), this sequence (g=8), A185119 (g=9).
%Y Connected 2-regular simple graphs with girth exactly g: A185013 (g=3), A185014 (g=4), A185015 (g=5), A185016 (g=6), A185017 (g=7), A185018 (g=8).
%K nonn,easy
%O 0
%A _Jason Kimberley_, Jan 28 2011