login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Let T(n) = n(n+1)/2 be the n-th triangular number (A000217); a(n) = T(8T(n)).
3

%I #18 Oct 17 2024 08:27:14

%S 0,36,300,1176,3240,7260,14196,25200,41616,64980,97020,139656,195000,

%T 265356,353220,461280,592416,749700,936396,1155960,1412040,1708476,

%U 2049300,2438736,2881200,3381300,3943836,4573800,5276376,6056940,6921060,7874496,8923200,10073316,11331180,12703320,14196456,15817500,17573556,19471920,21520080

%N Let T(n) = n(n+1)/2 be the n-th triangular number (A000217); a(n) = T(8T(n)).

%D C. Alsina and R. B. Nelson, Charming Proofs: A Journey into Elegant Mathematics, MAA, 2010. See p. 4.

%H G. C. Greubel, <a href="/A185096/b185096.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F From _G. C. Greubel_, Jun 22 2017: (Start)

%F a(n) = 2*n*(n + 1)*(2*n + 1)^2.

%F G.f.: 12*x*(3 + 10*x + 3*x^2)/(1 - x)^5.

%F E.g.f.: 2*x*(18 + 57*x + 32*x^2 + 4*x^3)*exp(x). (End)

%t Table[2*n*(n + 1)*(2*n + 1)^2, {n, 0, 50}] (* _G. C. Greubel_, Jun 22 2017 *)

%o (PARI) for(n=0,50, print1(2*n*(n+1)*(2*n+1)^2, ", ")) \\ _G. C. Greubel_, Jun 22 2017

%Y Cf. A000217, A185097.

%K nonn,easy

%O 0,2

%A _N. J. A. Sloane_, Feb 18 2011