login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = n^n! mod 7.
1

%I #31 Sep 08 2022 08:45:55

%S 0,1,4,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,

%T 1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,

%U 1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0

%N a(n) = n^n! mod 7.

%C For n > 2, periodic with period 7: repeat [1, 1, 1, 1, 0, 1, 1].

%H <a href="/index/Rec#order_07">Index entries for linear recurrences with constant coefficients</a>, signature (0, 0, 0, 0, 0, 0, 1).

%F G.f.: x*(3*x^8 - x^5 - x^4 - x^3 - x^2 - 4*x - 1)/(x^7 - 1). - _Chai Wah Wu_, Jun 04 2016

%F a(n) = sign(n mod 7) for n > 2. - _Wesley Ivan Hurt_, Dec 23 2016

%p A185058:= n -> [0, 1, 1, 1, 1, 1, 1][(n mod 7)+1]: 0,1,4,seq(A185058(n), n=3..100); # _Wesley Ivan Hurt_, Dec 23 2016

%t Table[PowerMod[n,n!,7],{n,0,84}]

%t Join[{0, 1, 4},LinearRecurrence[{0, 0, 0, 0, 0, 0, 1},{1, 1, 1, 1, 0, 1, 1},82]] (* _Ray Chandler_, Aug 26 2015 *)

%t PadRight[{0,1,4},120,{0,1,1,1,1,1,1}] (* _Harvey P. Dale_, May 29 2020 *)

%o (Magma) [0,1,4] cat &cat [[1, 1, 1, 1, 0, 1, 1]^^20]; // _Wesley Ivan Hurt_, Dec 23 2016

%K nonn,easy

%O 0,3

%A _José María Grau Ribas_, Jan 21 2012