Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #35 Nov 23 2019 02:50:14
%S 0,1,2,4,8,16,19,21,32,35,38,42,64,70,73,76,77,83,84,91,93,97,103,107,
%T 127,128,137,139,140,146,152,154,155,159,166,168,177,179,182,183,186,
%U 193,194,197,203,206,207,213,214,227,233,243,254,256,257,263,265,271,274
%N Quintic residues modulo 3331, sorted.
%C That is, numbers x = k^5 (mod 3331) for some k. Only 667 numbers occur in this sequence. For the nonresidues, see A184987.
%C Lehmer states a theorem that says that 3331 is the largest prime for which there are not three consecutive nonzero residues. The other primes having this property are in sequence A188384. - _T. D. Noe_, Mar 29 2011
%H Artur Jasinski, <a href="/A184986/b184986.txt">Table of n, a(n) for n = 1..667</a> (full sequence)
%H Lehmer D.H., <a href="http://projecteuclid.org/euclid.bams/1183528313">Mechanized mathematics,</a> Bull. Amer. Math. Soc., Vol. 72 (1966), No. 5, 739-759.
%t Union[Table[Mod[n^5, 3331], {n, 3331}]]
%t Union[PowerMod[Range[3331],5,3331]] (* _Harvey P. Dale_, Aug 05 2016 *)
%Y Cf. A184979, A184987, A188384.
%K nonn,fini,full
%O 1,3
%A _Artur Jasinski_, Mar 27 2011