Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #9 May 01 2014 02:36:25
%S 1,1,6,94,10786,3459386,1470293676,733351105934,1
%N Irregular triangle C(n,g) counting the connected 8-regular simple graphs on n vertices with girth exactly g.
%C The first column is for girth at least 3. The row length is incremented to g-2 when 2n reaches A054760(8,g).
%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_eq_g_index">Index of sequences counting connected k-regular simple graphs with girth exactly g</a>
%e 1;
%e 1;
%e 6;
%e 94;
%e 10786;
%e 3459386;
%e 1470293676;
%e 733351105934, 1;
%e ?, 0;
%e ?, 1;
%e ?, 0;
%e ?, 13;
%e ?, 1;
%Y Connected 8-regular simple graphs with girth at least g: A184981 (triangle); chosen g: A014378 (g=3), A181154 (g=4).
%Y Connected 8-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184983 (g=3).
%Y Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), A184950 (k=5), A184960 (k=6), A184970 (k=7), this sequence (k=8).
%K nonn,hard,more,tabf
%O 9,3
%A _Jason Kimberley_, Jan 19 2012