login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Irregular triangle C(n,g) counting the connected 5-regular simple graphs on 2n vertices with girth exactly g.
7

%I #15 May 01 2014 02:37:01

%S 1,3,59,1,7847,1,3459376,7,2585136287,388,2807104844073,406824

%N Irregular triangle C(n,g) counting the connected 5-regular simple graphs on 2n vertices with girth exactly g.

%C The first column is for girth exactly 3. The row length sequence starts: 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4. The row length is incremented to g-2 when 2n reaches A054760(5,g).

%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_eq_g_index">Index of sequences counting connected k-regular simple graphs with girth exactly g</a>

%H Jason Kimberley, <a href="/A184950/a184950.txt">Incomplete table of i, n, g, C(n,g)=a(i) for row n = 3..22</a>

%e 1;

%e 3;

%e 59, 1;

%e 7847, 1;

%e 3459376, 7;

%e 2585136287, 388;

%e 2807104844073, 406824;

%e ?, 1125022325;

%e ?, 3813549359274;

%Y Connected 5-regular simple graphs with girth at least g: A184951 (triangle); chosen g: A006821 (g=3), A058275 (g=4).

%Y Connected 5-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184953 (g=3), A184954 (g=4), A184955 (g=5).

%Y Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), A184940 (k=4), this sequence (k=5), A184960 (k=6), A184970 (k=7), A184980 (k=8).

%K nonn,hard,more,tabf

%O 3,2

%A _Jason Kimberley_, Feb 24 2011