login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers m such that prime(m) is of the form floor[(k-1/2)*(2+2^(1/2))+1/2]; complement of A184867.
4

%I #8 Jan 30 2018 09:58:40

%S 1,3,8,10,14,16,19,21,25,26,32,35,41,44,49,53,54,58,69,71,73,79,85,87,

%T 90,93,98,100,109,112,118,121,125,128,131,132,137,138,139,141,142,149,

%U 153,159,160,161,164,169,171,174,181,182,192,196,199,202,207,209,213,218,219,221,226,228,231,235,236,240,242,246,249,255,258,259,266,267,270,273,275,277,279,280,287,292,294,297,299,303

%N Numbers m such that prime(m) is of the form floor[(k-1/2)*(2+2^(1/2))+1/2]; complement of A184867.

%H G. C. Greubel, <a href="/A184870/b184870.txt">Table of n, a(n) for n = 1..10000</a>

%t a[n_]:=Floor[(n-1/2)*(2+2^(1/2))+1/2];

%t Table[a[n],{n,1,120}] (* A063957 *)

%t t1={}; Do[If[PrimeQ[a[n]], AppendTo[t1,a[n]]],{n,1,600}];t1

%t t2={}; Do[If[PrimeQ[a[n]], AppendTo[t2,n]],{n,1,600}];t2

%t t3={}; Do[If[MemberQ[t1,Prime[n]],AppendTo[t3,n]],{n,1,400}];t3

%t (* Lists t1, t2, t3 match A184868, A184869, A184870. *)

%Y Cf. A063957, A184868, A184869.

%K nonn

%O 1,2

%A _Clark Kimberling_, Jan 23 2011